Cargando…
Identifying Robust Radiomics Features for Lung Cancer by Using In-Vivo and Phantom Lung Lesions
We propose a novel framework for determining radiomics feature robustness by considering the effects of both biological and noise signals. This framework is preliminarily tested in a study predicting the epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) pa...
Autores principales: | Lu, Lin, Sun, Shawn H., Afran, Aaron, Yang, Hao, Lu, Zheng Feng, So, James, Schwartz, Lawrence H., Zhao, Binsheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7934702/ https://www.ncbi.nlm.nih.gov/pubmed/33681463 http://dx.doi.org/10.3390/tomography7010005 |
Ejemplares similares
-
Reliability of Radiomic Features Across Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using ACR CT Phantom
por: Lu, Lin, et al.
Publicado: (2019) -
Radiomics Prediction of EGFR Status in Lung Cancer—Our Experience in Using Multiple Feature Extractors and The Cancer Imaging Archive Data
por: Lu, Lin, et al.
Publicado: (2020) -
Toward radiomics for assessment of response to systemic therapies in lung cancer
por: Sun, Shawn, et al.
Publicado: (2020) -
Radiomics feature robustness as measured using an MRI phantom
por: Lee, Joonsang, et al.
Publicado: (2021) -
Experimental phantom evaluation to identify robust positron emission tomography (PET) radiomic features
por: Carles, Montserrat, et al.
Publicado: (2021)