Cargando…
A covariate-constraint method to map brain feature space into lower dimensional manifolds
Human brain connectome studies aim to both explore healthy brains, and extract and analyze relevant features associated with pathologies of interest. Usually this consists of modeling the brain connectome as a graph and using graph metrics as features. A fine brain description requires graph metrics...
Autores principales: | Renard, Félix, Heinrich, Christian, Bouthillon, Marine, Schenck, Maleka, Schneider, Francis, Kremer, Stéphane, Achard, Sophie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935034/ https://www.ncbi.nlm.nih.gov/pubmed/33688614 http://dx.doi.org/10.1162/netn_a_00176 |
Ejemplares similares
-
A Framework of Covariance Projection on Constraint Manifold for Data Fusion †
por: Abu Bakr, Muhammad, et al.
Publicado: (2018) -
Resting-state networks distinguish locked-in from vegetative state patients()
por: Roquet, Daniel, et al.
Publicado: (2016) -
Covariant Schrödinger semigroups on Riemannian manifolds
por: Güneysu, Batu
Publicado: (2017) -
Anatytic functions and manifolds in infinite dimensional spaces
por: Coeuré, Gérard
Publicado: (1974) -
Adaptive filter with Riemannian manifold constraint
por: Mejia, Jose, et al.
Publicado: (2023)