Cargando…

Effects of ocean eddies on the tropical storm Roanu intensity in the Bay of Bengal

A tropical storm (TS) Roanu occurred in northern Sri Lanka in 2016, which transported northwards along the west coast of the Bay of Bengal (BoB). During the development of the TS, ocean eddies on its track had an important effect on the intensity of Roanu. The dynamic mechanism was investigated with...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yujun, LÜ, Haibin, Zhang, Honghua, Cui, Yusheng, Xing, Xueting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935279/
https://www.ncbi.nlm.nih.gov/pubmed/33667249
http://dx.doi.org/10.1371/journal.pone.0247521
Descripción
Sumario:A tropical storm (TS) Roanu occurred in northern Sri Lanka in 2016, which transported northwards along the west coast of the Bay of Bengal (BoB). During the development of the TS, ocean eddies on its track had an important effect on the intensity of Roanu. The dynamic mechanism was investigated with multisource reanalysis and Argo float data in this study. The results show that ocean eddies were the main reason why Roanu first enhanced, weakened, and then enhanced again. Warm eddy W1 supports the initial development of the TS, cold eddy C1 weakens Roanu, and warm eddy W2 continues to support Roanu. On May 19, 2016, the maximum average latent heat flux over W1 was 260.85 w/m(2), while that of C1 was only 200.71 w/m(2). After the passage of Roanu, the tropical cyclone heat potential (TCHP) of eddies significantly decreased. The TCHP of W1, W2, C1 and C2 decreased by 20.95 kJ/cm(2), 11.07 kJ/cm(2), 29.82 kJ/cm(2), 9.31 kJ/cm(2), respectively. The mixed layer of warm eddies deepened much more than that of cold eddies, supporting Roanu development. In addition, changes in potential vorticity (PV) values caused by the disturbance of eddies may also reflect changes in the TS intensity. This study offers new insights on the influence of ocean eddies in regulating the development of tropical cyclone (TC) in the BoB.