Cargando…
An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time
Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent transmission-containing strategies, outbreaks have continued to emerge across the United States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully timed nonpharmaceutica...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935356/ https://www.ncbi.nlm.nih.gov/pubmed/33674304 http://dx.doi.org/10.1126/sciadv.abd6989 |
_version_ | 1783660992453935104 |
---|---|
author | Kogan, Nicole E. Clemente, Leonardo Liautaud, Parker Kaashoek, Justin Link, Nicholas B. Nguyen, Andre T. Lu, Fred S. Huybers, Peter Resch, Bernd Havas, Clemens Petutschnig, Andreas Davis, Jessica Chinazzi, Matteo Mustafa, Backtosch Hanage, William P. Vespignani, Alessandro Santillana, Mauricio |
author_facet | Kogan, Nicole E. Clemente, Leonardo Liautaud, Parker Kaashoek, Justin Link, Nicholas B. Nguyen, Andre T. Lu, Fred S. Huybers, Peter Resch, Bernd Havas, Clemens Petutschnig, Andreas Davis, Jessica Chinazzi, Matteo Mustafa, Backtosch Hanage, William P. Vespignani, Alessandro Santillana, Mauricio |
author_sort | Kogan, Nicole E. |
collection | PubMed |
description | Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent transmission-containing strategies, outbreaks have continued to emerge across the United States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully timed nonpharmaceutical interventions (NPIs). A COVID-19 early warning system is vital for this. Here, we evaluate digital data streams as early indicators of state-level COVID-19 activity from 1 March to 30 September 2020. We observe that increases in digital data stream activity anticipate increases in confirmed cases and deaths by 2 to 3 weeks. Confirmed cases and deaths also decrease 2 to 4 weeks after NPI implementation, as measured by anonymized, phone-derived human mobility data. We propose a means of harmonizing these data streams to identify future COVID-19 outbreaks. Our results suggest that combining disparate health and behavioral data may help identify disease activity changes weeks before observation using traditional epidemiological monitoring. |
format | Online Article Text |
id | pubmed-7935356 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-79353562021-03-17 An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time Kogan, Nicole E. Clemente, Leonardo Liautaud, Parker Kaashoek, Justin Link, Nicholas B. Nguyen, Andre T. Lu, Fred S. Huybers, Peter Resch, Bernd Havas, Clemens Petutschnig, Andreas Davis, Jessica Chinazzi, Matteo Mustafa, Backtosch Hanage, William P. Vespignani, Alessandro Santillana, Mauricio Sci Adv Research Articles Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent transmission-containing strategies, outbreaks have continued to emerge across the United States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully timed nonpharmaceutical interventions (NPIs). A COVID-19 early warning system is vital for this. Here, we evaluate digital data streams as early indicators of state-level COVID-19 activity from 1 March to 30 September 2020. We observe that increases in digital data stream activity anticipate increases in confirmed cases and deaths by 2 to 3 weeks. Confirmed cases and deaths also decrease 2 to 4 weeks after NPI implementation, as measured by anonymized, phone-derived human mobility data. We propose a means of harmonizing these data streams to identify future COVID-19 outbreaks. Our results suggest that combining disparate health and behavioral data may help identify disease activity changes weeks before observation using traditional epidemiological monitoring. American Association for the Advancement of Science 2021-03-05 /pmc/articles/PMC7935356/ /pubmed/33674304 http://dx.doi.org/10.1126/sciadv.abd6989 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/ https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Kogan, Nicole E. Clemente, Leonardo Liautaud, Parker Kaashoek, Justin Link, Nicholas B. Nguyen, Andre T. Lu, Fred S. Huybers, Peter Resch, Bernd Havas, Clemens Petutschnig, Andreas Davis, Jessica Chinazzi, Matteo Mustafa, Backtosch Hanage, William P. Vespignani, Alessandro Santillana, Mauricio An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time |
title | An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time |
title_full | An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time |
title_fullStr | An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time |
title_full_unstemmed | An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time |
title_short | An early warning approach to monitor COVID-19 activity with multiple digital traces in near real time |
title_sort | early warning approach to monitor covid-19 activity with multiple digital traces in near real time |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935356/ https://www.ncbi.nlm.nih.gov/pubmed/33674304 http://dx.doi.org/10.1126/sciadv.abd6989 |
work_keys_str_mv | AT kogannicolee anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT clementeleonardo anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT liautaudparker anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT kaashoekjustin anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT linknicholasb anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT nguyenandret anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT lufreds anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT huyberspeter anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT reschbernd anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT havasclemens anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT petutschnigandreas anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT davisjessica anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT chinazzimatteo anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT mustafabacktosch anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT hanagewilliamp anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT vespignanialessandro anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT santillanamauricio anearlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT kogannicolee earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT clementeleonardo earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT liautaudparker earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT kaashoekjustin earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT linknicholasb earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT nguyenandret earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT lufreds earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT huyberspeter earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT reschbernd earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT havasclemens earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT petutschnigandreas earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT davisjessica earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT chinazzimatteo earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT mustafabacktosch earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT hanagewilliamp earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT vespignanialessandro earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime AT santillanamauricio earlywarningapproachtomonitorcovid19activitywithmultipledigitaltracesinnearrealtime |