Cargando…

A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis

BACKGROUND: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. W...

Descripción completa

Detalles Bibliográficos
Autores principales: Wright, Shelton W, Kaewarpai, Taniya, Lovelace-Macon, Lara, Ducken, Deirdre, Hantrakun, Viriya, Rudd, Kristina E, Teparrukkul, Prapit, Phunpang, Rungnapa, Ekchariyawat, Peeraya, Dulsuk, Adul, Moonmueangsan, Boonhthanom, Morakot, Chumpol, Thiansukhon, Ekkachai, Limmathurotsakul, Direk, Chantratita, Narisara, West, T Eoin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935382/
https://www.ncbi.nlm.nih.gov/pubmed/32034914
http://dx.doi.org/10.1093/cid/ciaa126
_version_ 1783660997821595648
author Wright, Shelton W
Kaewarpai, Taniya
Lovelace-Macon, Lara
Ducken, Deirdre
Hantrakun, Viriya
Rudd, Kristina E
Teparrukkul, Prapit
Phunpang, Rungnapa
Ekchariyawat, Peeraya
Dulsuk, Adul
Moonmueangsan, Boonhthanom
Morakot, Chumpol
Thiansukhon, Ekkachai
Limmathurotsakul, Direk
Chantratita, Narisara
West, T Eoin
author_facet Wright, Shelton W
Kaewarpai, Taniya
Lovelace-Macon, Lara
Ducken, Deirdre
Hantrakun, Viriya
Rudd, Kristina E
Teparrukkul, Prapit
Phunpang, Rungnapa
Ekchariyawat, Peeraya
Dulsuk, Adul
Moonmueangsan, Boonhthanom
Morakot, Chumpol
Thiansukhon, Ekkachai
Limmathurotsakul, Direk
Chantratita, Narisara
West, T Eoin
author_sort Wright, Shelton W
collection PubMed
description BACKGROUND: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. We sought to develop a biomarker-based model for 28-day mortality prediction in melioidosis. METHODS: In a derivation set (N = 113) of prospectively enrolled, hospitalized Thai patients with melioidosis, we measured concentrations of interferon-γ, interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-ɑ, granulocyte-colony stimulating factor, and interleukin-17A. We used least absolute shrinkage and selection operator (LASSO) regression to identify a subset of predictive biomarkers and performed logistic regression and receiver operating characteristic curve analysis to evaluate biomarker-based prediction of 28-day mortality compared with clinical variables. We repeated select analyses in an internal validation set (N = 78) and in a prospectively enrolled external validation set (N = 161) of hospitalized adults with melioidosis. RESULTS: All 8 cytokines were positively associated with 28-day mortality. Of these, interleukin-6 and interleukin-8 were selected by LASSO regression. A model consisting of interleukin-6, interleukin-8, and clinical variables significantly improved 28-day mortality prediction over a model of only clinical variables [AUC (95% confidence interval [CI]): 0.86 (.79–.92) vs 0.78 (.69–.87); P = .01]. In both the internal validation set (0.91 [0.84–0.97]) and the external validation set (0.81 [0.74–0.88]), the combined model including biomarkers significantly improved 28-day mortality prediction over a model limited to clinical variables. CONCLUSIONS: A 2-biomarker model augments clinical prediction of 28-day mortality in melioidosis.
format Online
Article
Text
id pubmed-7935382
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-79353822021-03-10 A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis Wright, Shelton W Kaewarpai, Taniya Lovelace-Macon, Lara Ducken, Deirdre Hantrakun, Viriya Rudd, Kristina E Teparrukkul, Prapit Phunpang, Rungnapa Ekchariyawat, Peeraya Dulsuk, Adul Moonmueangsan, Boonhthanom Morakot, Chumpol Thiansukhon, Ekkachai Limmathurotsakul, Direk Chantratita, Narisara West, T Eoin Clin Infect Dis Major Articles and Commentaries BACKGROUND: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. We sought to develop a biomarker-based model for 28-day mortality prediction in melioidosis. METHODS: In a derivation set (N = 113) of prospectively enrolled, hospitalized Thai patients with melioidosis, we measured concentrations of interferon-γ, interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-ɑ, granulocyte-colony stimulating factor, and interleukin-17A. We used least absolute shrinkage and selection operator (LASSO) regression to identify a subset of predictive biomarkers and performed logistic regression and receiver operating characteristic curve analysis to evaluate biomarker-based prediction of 28-day mortality compared with clinical variables. We repeated select analyses in an internal validation set (N = 78) and in a prospectively enrolled external validation set (N = 161) of hospitalized adults with melioidosis. RESULTS: All 8 cytokines were positively associated with 28-day mortality. Of these, interleukin-6 and interleukin-8 were selected by LASSO regression. A model consisting of interleukin-6, interleukin-8, and clinical variables significantly improved 28-day mortality prediction over a model of only clinical variables [AUC (95% confidence interval [CI]): 0.86 (.79–.92) vs 0.78 (.69–.87); P = .01]. In both the internal validation set (0.91 [0.84–0.97]) and the external validation set (0.81 [0.74–0.88]), the combined model including biomarkers significantly improved 28-day mortality prediction over a model limited to clinical variables. CONCLUSIONS: A 2-biomarker model augments clinical prediction of 28-day mortality in melioidosis. Oxford University Press 2020-02-08 /pmc/articles/PMC7935382/ /pubmed/32034914 http://dx.doi.org/10.1093/cid/ciaa126 Text en © The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Major Articles and Commentaries
Wright, Shelton W
Kaewarpai, Taniya
Lovelace-Macon, Lara
Ducken, Deirdre
Hantrakun, Viriya
Rudd, Kristina E
Teparrukkul, Prapit
Phunpang, Rungnapa
Ekchariyawat, Peeraya
Dulsuk, Adul
Moonmueangsan, Boonhthanom
Morakot, Chumpol
Thiansukhon, Ekkachai
Limmathurotsakul, Direk
Chantratita, Narisara
West, T Eoin
A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis
title A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis
title_full A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis
title_fullStr A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis
title_full_unstemmed A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis
title_short A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis
title_sort 2-biomarker model augments clinical prediction of mortality in melioidosis
topic Major Articles and Commentaries
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935382/
https://www.ncbi.nlm.nih.gov/pubmed/32034914
http://dx.doi.org/10.1093/cid/ciaa126
work_keys_str_mv AT wrightsheltonw a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT kaewarpaitaniya a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT lovelacemaconlara a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT duckendeirdre a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT hantrakunviriya a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT ruddkristinae a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT teparrukkulprapit a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT phunpangrungnapa a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT ekchariyawatpeeraya a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT dulsukadul a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT moonmueangsanboonhthanom a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT morakotchumpol a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT thiansukhonekkachai a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT limmathurotsakuldirek a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT chantratitanarisara a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT westteoin a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT wrightsheltonw 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT kaewarpaitaniya 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT lovelacemaconlara 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT duckendeirdre 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT hantrakunviriya 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT ruddkristinae 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT teparrukkulprapit 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT phunpangrungnapa 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT ekchariyawatpeeraya 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT dulsukadul 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT moonmueangsanboonhthanom 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT morakotchumpol 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT thiansukhonekkachai 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT limmathurotsakuldirek 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT chantratitanarisara 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis
AT westteoin 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis