Cargando…
A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis
BACKGROUND: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. W...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935382/ https://www.ncbi.nlm.nih.gov/pubmed/32034914 http://dx.doi.org/10.1093/cid/ciaa126 |
_version_ | 1783660997821595648 |
---|---|
author | Wright, Shelton W Kaewarpai, Taniya Lovelace-Macon, Lara Ducken, Deirdre Hantrakun, Viriya Rudd, Kristina E Teparrukkul, Prapit Phunpang, Rungnapa Ekchariyawat, Peeraya Dulsuk, Adul Moonmueangsan, Boonhthanom Morakot, Chumpol Thiansukhon, Ekkachai Limmathurotsakul, Direk Chantratita, Narisara West, T Eoin |
author_facet | Wright, Shelton W Kaewarpai, Taniya Lovelace-Macon, Lara Ducken, Deirdre Hantrakun, Viriya Rudd, Kristina E Teparrukkul, Prapit Phunpang, Rungnapa Ekchariyawat, Peeraya Dulsuk, Adul Moonmueangsan, Boonhthanom Morakot, Chumpol Thiansukhon, Ekkachai Limmathurotsakul, Direk Chantratita, Narisara West, T Eoin |
author_sort | Wright, Shelton W |
collection | PubMed |
description | BACKGROUND: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. We sought to develop a biomarker-based model for 28-day mortality prediction in melioidosis. METHODS: In a derivation set (N = 113) of prospectively enrolled, hospitalized Thai patients with melioidosis, we measured concentrations of interferon-γ, interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-ɑ, granulocyte-colony stimulating factor, and interleukin-17A. We used least absolute shrinkage and selection operator (LASSO) regression to identify a subset of predictive biomarkers and performed logistic regression and receiver operating characteristic curve analysis to evaluate biomarker-based prediction of 28-day mortality compared with clinical variables. We repeated select analyses in an internal validation set (N = 78) and in a prospectively enrolled external validation set (N = 161) of hospitalized adults with melioidosis. RESULTS: All 8 cytokines were positively associated with 28-day mortality. Of these, interleukin-6 and interleukin-8 were selected by LASSO regression. A model consisting of interleukin-6, interleukin-8, and clinical variables significantly improved 28-day mortality prediction over a model of only clinical variables [AUC (95% confidence interval [CI]): 0.86 (.79–.92) vs 0.78 (.69–.87); P = .01]. In both the internal validation set (0.91 [0.84–0.97]) and the external validation set (0.81 [0.74–0.88]), the combined model including biomarkers significantly improved 28-day mortality prediction over a model limited to clinical variables. CONCLUSIONS: A 2-biomarker model augments clinical prediction of 28-day mortality in melioidosis. |
format | Online Article Text |
id | pubmed-7935382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-79353822021-03-10 A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis Wright, Shelton W Kaewarpai, Taniya Lovelace-Macon, Lara Ducken, Deirdre Hantrakun, Viriya Rudd, Kristina E Teparrukkul, Prapit Phunpang, Rungnapa Ekchariyawat, Peeraya Dulsuk, Adul Moonmueangsan, Boonhthanom Morakot, Chumpol Thiansukhon, Ekkachai Limmathurotsakul, Direk Chantratita, Narisara West, T Eoin Clin Infect Dis Major Articles and Commentaries BACKGROUND: Melioidosis, infection caused by Burkholderia pseudomallei, is a common cause of sepsis with high associated mortality in Southeast Asia. Identification of patients at high likelihood of clinical deterioration is important for guiding decisions about resource allocation and management. We sought to develop a biomarker-based model for 28-day mortality prediction in melioidosis. METHODS: In a derivation set (N = 113) of prospectively enrolled, hospitalized Thai patients with melioidosis, we measured concentrations of interferon-γ, interleukin-1β, interleukin-6, interleukin-8, interleukin-10, tumor necrosis factor-ɑ, granulocyte-colony stimulating factor, and interleukin-17A. We used least absolute shrinkage and selection operator (LASSO) regression to identify a subset of predictive biomarkers and performed logistic regression and receiver operating characteristic curve analysis to evaluate biomarker-based prediction of 28-day mortality compared with clinical variables. We repeated select analyses in an internal validation set (N = 78) and in a prospectively enrolled external validation set (N = 161) of hospitalized adults with melioidosis. RESULTS: All 8 cytokines were positively associated with 28-day mortality. Of these, interleukin-6 and interleukin-8 were selected by LASSO regression. A model consisting of interleukin-6, interleukin-8, and clinical variables significantly improved 28-day mortality prediction over a model of only clinical variables [AUC (95% confidence interval [CI]): 0.86 (.79–.92) vs 0.78 (.69–.87); P = .01]. In both the internal validation set (0.91 [0.84–0.97]) and the external validation set (0.81 [0.74–0.88]), the combined model including biomarkers significantly improved 28-day mortality prediction over a model limited to clinical variables. CONCLUSIONS: A 2-biomarker model augments clinical prediction of 28-day mortality in melioidosis. Oxford University Press 2020-02-08 /pmc/articles/PMC7935382/ /pubmed/32034914 http://dx.doi.org/10.1093/cid/ciaa126 Text en © The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Major Articles and Commentaries Wright, Shelton W Kaewarpai, Taniya Lovelace-Macon, Lara Ducken, Deirdre Hantrakun, Viriya Rudd, Kristina E Teparrukkul, Prapit Phunpang, Rungnapa Ekchariyawat, Peeraya Dulsuk, Adul Moonmueangsan, Boonhthanom Morakot, Chumpol Thiansukhon, Ekkachai Limmathurotsakul, Direk Chantratita, Narisara West, T Eoin A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis |
title | A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis |
title_full | A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis |
title_fullStr | A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis |
title_full_unstemmed | A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis |
title_short | A 2-Biomarker Model Augments Clinical Prediction of Mortality in Melioidosis |
title_sort | 2-biomarker model augments clinical prediction of mortality in melioidosis |
topic | Major Articles and Commentaries |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935382/ https://www.ncbi.nlm.nih.gov/pubmed/32034914 http://dx.doi.org/10.1093/cid/ciaa126 |
work_keys_str_mv | AT wrightsheltonw a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT kaewarpaitaniya a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT lovelacemaconlara a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT duckendeirdre a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT hantrakunviriya a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT ruddkristinae a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT teparrukkulprapit a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT phunpangrungnapa a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT ekchariyawatpeeraya a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT dulsukadul a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT moonmueangsanboonhthanom a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT morakotchumpol a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT thiansukhonekkachai a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT limmathurotsakuldirek a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT chantratitanarisara a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT westteoin a2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT wrightsheltonw 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT kaewarpaitaniya 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT lovelacemaconlara 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT duckendeirdre 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT hantrakunviriya 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT ruddkristinae 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT teparrukkulprapit 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT phunpangrungnapa 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT ekchariyawatpeeraya 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT dulsukadul 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT moonmueangsanboonhthanom 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT morakotchumpol 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT thiansukhonekkachai 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT limmathurotsakuldirek 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT chantratitanarisara 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis AT westteoin 2biomarkermodelaugmentsclinicalpredictionofmortalityinmelioidosis |