Cargando…
Efficient COVID-19 Segmentation from CT Slices Exploiting Semantic Segmentation with Integrated Attention Mechanism
Coronavirus (COVID-19) is a pandemic, which caused suddenly unexplained pneumonia cases and caused a devastating effect on global public health. Computerized tomography (CT) is one of the most effective tools for COVID-19 screening. Since some specific patterns such as bilateral, peripheral, and bas...
Autores principales: | Budak, Ümit, Çıbuk, Musa, Cömert, Zafer, Şengür, Abdulkadir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935480/ https://www.ncbi.nlm.nih.gov/pubmed/33674979 http://dx.doi.org/10.1007/s10278-021-00434-5 |
Ejemplares similares
-
Multiple-Attention Mechanism Network for Semantic Segmentation
por: Wang, Dongli, et al.
Publicado: (2022) -
An ENet Semantic Segmentation Method Combined with Attention Mechanism
por: Bai, Wei
Publicado: (2023) -
Label-efficient deep semantic segmentation of intracranial hemorrhages in CT-scans
por: Spahr, Antoine, et al.
Publicado: (2023) -
Semantic Segmentation and Depth Estimation Based on Residual Attention Mechanism
por: Ji, Naihua, et al.
Publicado: (2023) -
Analysis of Tracheobronchial Diverticula Based on Semantic Segmentation of CT Images via the Dual-Channel Attention Network
por: Zhang, Maoyi, et al.
Publicado: (2022)