Cargando…
Use of machine learning to predict clinical decision support compliance, reduce alert burden, and evaluate duplicate laboratory test ordering alerts
OBJECTIVES: While well-designed clinical decision support (CDS) alerts can improve patient care, utilization management, and population health, excessive alerting may be counterproductive, leading to clinician burden and alert fatigue. We sought to develop machine learning models to predict whether...
Autores principales: | Baron, Jason M, Huang, Richard, McEvoy, Dustin, Dighe, Anand S |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935497/ https://www.ncbi.nlm.nih.gov/pubmed/33709062 http://dx.doi.org/10.1093/jamiaopen/ooab006 |
Ejemplares similares
-
Clinical decision support alert malfunctions: analysis and empirically derived taxonomy
por: Wright, Adam, et al.
Publicado: (2017) -
Structured override reasons for drug-drug interaction alerts in electronic health records
por: Wright, Adam, et al.
Publicado: (2019) -
Renal medication-related clinical decision support (CDS) alerts and overrides in the inpatient setting following implementation of a commercial electronic health record: implications for designing more effective alerts
por: Shah, Sonam N, et al.
Publicado: (2021) -
Variation in high-priority drug-drug interaction alerts across institutions and electronic health records
por: McEvoy, Dustin S, et al.
Publicado: (2017) -
A novel strategy for evaluating the effects of an electronic test ordering alert message: Optimizing cardiac marker use
por: Baron, Jason M., et al.
Publicado: (2012)