Cargando…
Comparison and interpretability of machine learning models to predict severity of chest injury
OBJECTIVE: Trauma quality improvement programs and registries improve care and outcomes for injured patients. Designated trauma centers calculate injury scores using dedicated trauma registrars; however, many injuries arrive at nontrauma centers, leaving a substantial amount of data uncaptured. We p...
Autores principales: | Kulshrestha, Sujay, Dligach, Dmitriy, Joyce, Cara, Gonzalez, Richard, O’Rourke, Ann P, Glazer, Joshua M, Stey, Anne, Kruser, Jacqueline M, Churpek, Matthew M, Afshar, Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935500/ https://www.ncbi.nlm.nih.gov/pubmed/33709067 http://dx.doi.org/10.1093/jamiaopen/ooab015 |
Ejemplares similares
-
Bias and fairness assessment of a natural language processing opioid misuse classifier: detection and mitigation of electronic health record data disadvantages across racial subgroups
por: Thompson, Hale M, et al.
Publicado: (2021) -
Publicly available machine learning models for identifying opioid misuse from the clinical notes of hospitalized patients
por: Sharma, Brihat, et al.
Publicado: (2020) -
Development and multimodal validation of a substance misuse algorithm for referral to treatment using artificial intelligence (SMART-AI): a retrospective deep learning study
por: Afshar, Majid, et al.
Publicado: (2022) -
Hierarchical Annotation for Building A Suite of Clinical Natural Language Processing Tasks: Progress Note Understanding
por: Gao, Yanjun, et al.
Publicado: (2022) -
Discovering body site and severity modifiers in clinical texts
por: Dligach, Dmitriy, et al.
Publicado: (2014)