Cargando…
Transfer of Learning in the Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global Invariants
The convolutional neural networks (CNNs) are a powerful tool of image classification that has been widely adopted in applications of automated scene segmentation and identification. However, the mechanisms underlying CNN image classification remain to be elucidated. In this study, we developed a new...
Autores principales: | Zheng, Yufeng, Huang, Jun, Chen, Tianwen, Ou, Yang, Zhou, Wu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935523/ https://www.ncbi.nlm.nih.gov/pubmed/33679359 http://dx.doi.org/10.3389/fncom.2021.637144 |
Ejemplares similares
-
Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data
por: Seong, Si-Baek, et al.
Publicado: (2018) -
Transfer Learning with Deep Convolutional Neural Networks for Classifying Cellular Morphological Changes
por: Kensert, Alexander, et al.
Publicado: (2019) -
An integrated convolutional neural network for classifying small pulmonary solid nodules
por: Mei, Mengqing, et al.
Publicado: (2023) -
Wafer map failure pattern classification using geometric transformation-invariant convolutional neural network
por: Jeong, Iljoo, et al.
Publicado: (2023) -
Deep convolutional networks do not classify based on global object shape
por: Baker, Nicholas, et al.
Publicado: (2018)