Cargando…
SUSTain: Scalable Unsupervised Scoring for Tensors and its Application to Phenotyping
This paper presents a new method, which we call SUSTain, that extends real-valued matrix and tensor factorizations to data where values are integers. Such data are common when the values correspond to event counts or ordinal measures. The conventional approach is to treat integer data as real, and t...
Autores principales: | Perros, Ioakeim, Papalexakis, Evangelos E., Park, Haesun, Vuduc, Richard, Yan, Xiaowei, Defilippi, Christopher, Stewart, Walter F., Sun, Jimeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935718/ https://www.ncbi.nlm.nih.gov/pubmed/33680534 http://dx.doi.org/10.1145/3219819.3219999 |
Ejemplares similares
-
Adaptive granularity in tensors: A quest for interpretable structure
por: Pasricha, Ravdeep S., et al.
Publicado: (2022) -
Discriminative and Distinct Phenotyping by Constrained Tensor Factorization
por: Kim, Yejin, et al.
Publicado: (2017) -
Quantum process tomography with unsupervised learning and tensor networks
por: Torlai, Giacomo, et al.
Publicado: (2023) -
Scalable Unsupervised Learning for Deep Discrete Generative Models
por: Guiraud, Enrico
Publicado: (2021) -
The Anatomy of American Football: Evidence from 7 Years of NFL Game Data
por: Pelechrinis, Konstantinos, et al.
Publicado: (2016)