Cargando…
Factorization of Dual Quaternion Polynomials Without Study’s Condition
In this paper we investigate factorizations of polynomials over the ring of dual quaternions into linear factors. While earlier results assume that the norm polynomial is real (“motion polynomials”), we only require the absence of real polynomial factors in the primal part and factorizability of the...
Autores principales: | Siegele, Johannes, Pfurner, Martin, Schröcker, Hans-Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935834/ https://www.ncbi.nlm.nih.gov/pubmed/33746321 http://dx.doi.org/10.1007/s00006-021-01123-w |
Ejemplares similares
-
Quadratic Split Quaternion Polynomials: Factorization and Geometry
por: Scharler, Daniel F., et al.
Publicado: (2019) -
Factorization of quaternionic polynomials of bi-degree (n,1)
por: Lercher, Johanna, et al.
Publicado: (2022) -
An Algorithm for the Factorization of Split Quaternion Polynomials
por: Scharler, Daniel F., et al.
Publicado: (2021) -
Special geometry, cubic polynomials and homogeneous quaternionic spaces
por: de Wit, B., et al.
Publicado: (1992) -
The Study Variety of Conformal Kinematics
por: Kalkan, Bahar, et al.
Publicado: (2022)