Cargando…
Inverse design of photonic meta-structure for beam collimation in on-chip sensing
Designed or patterned structured surfaces, metasurfaces, enable the miniaturization of complex arrangements of optical elements on a plane. Most of the existing literature focuses on miniaturizing the optical detection; little attention is directed to on-chip optical excitation. In this work, we des...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935853/ https://www.ncbi.nlm.nih.gov/pubmed/33674688 http://dx.doi.org/10.1038/s41598-021-84841-2 |
Sumario: | Designed or patterned structured surfaces, metasurfaces, enable the miniaturization of complex arrangements of optical elements on a plane. Most of the existing literature focuses on miniaturizing the optical detection; little attention is directed to on-chip optical excitation. In this work, we design a metasurface to create a planar integrated photonic source beam collimator for use in on-chip optofluidic sensing applications. We use an iterative inverse design approach in order to optimize the metasurface to achieve a target performance using gradient descent method. We then fabricate beam collimators and experimentally compare performance characteristics with conventional uniform binary grating-based photonic beam diffractors. The optimal design enhances the illumination power by a factor of 5. The reinforced beam is more uniform with 3 dB beam spot increased almost ~ 3 times for the same device footprint area. The design approach will be useful in on-chip applications of fluorescence imaging, Raman, and IR spectroscopy and will enable better multiplexing of light sources for high throughput biosensing. |
---|