Cargando…
Deep-learning system to improve the quality and efficiency of volumetric heart segmentation for breast cancer
Although artificial intelligence algorithms are often developed and applied for narrow tasks, their implementation in other medical settings could help to improve patient care. Here we assess whether a deep-learning system for volumetric heart segmentation on computed tomography (CT) scans developed...
Autores principales: | Zeleznik, Roman, Weiss, Jakob, Taron, Jana, Guthier, Christian, Bitterman, Danielle S., Hancox, Cindy, Kann, Benjamin H., Kim, Daniel W., Punglia, Rinaa S., Bredfeldt, Jeremy, Foldyna, Borek, Eslami, Parastou, Lu, Michael T., Hoffmann, Udo, Mak, Raymond, Aerts, Hugo J. W. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935874/ https://www.ncbi.nlm.nih.gov/pubmed/33674717 http://dx.doi.org/10.1038/s41746-021-00416-5 |
Ejemplares similares
-
Deep convolutional neural networks to predict cardiovascular risk from computed tomography
por: Zeleznik, Roman, et al.
Publicado: (2021) -
Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
por: Weiss, Jakob, et al.
Publicado: (2021) -
Standardized measurement of abdominal muscle by computed tomography: association with cardiometabolic risk in the Framingham Heart Study
por: Kammerlander, Andreas, et al.
Publicado: (2022) -
Cost Effectiveness of DCISionRT for Guiding Treatment of Ductal Carcinoma in Situ
por: Raldow, Ann C, et al.
Publicado: (2020) -
Radiomics versus Visual and Histogram-based Assessment to Identify Atheromatous Lesions at Coronary CT Angiography: An ex Vivo Study
por: Kolossváry, Márton, et al.
Publicado: (2019)