Cargando…
Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms
The treatment plan of colorectal neoplasm differs based on histology. Although new endoscopic imaging systems have been developed, there are clear diagnostic thresholds and requirements in using them. To overcome these limitations, we trained convolutional neural networks (CNNs) with endoscopic imag...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935886/ https://www.ncbi.nlm.nih.gov/pubmed/33674628 http://dx.doi.org/10.1038/s41598-021-84299-2 |
_version_ | 1783661089292025856 |
---|---|
author | Choi, Seong Ji Kim, Eun Sun Choi, Kihwan |
author_facet | Choi, Seong Ji Kim, Eun Sun Choi, Kihwan |
author_sort | Choi, Seong Ji |
collection | PubMed |
description | The treatment plan of colorectal neoplasm differs based on histology. Although new endoscopic imaging systems have been developed, there are clear diagnostic thresholds and requirements in using them. To overcome these limitations, we trained convolutional neural networks (CNNs) with endoscopic images and developed a computer-aided diagnostic (CAD) system which predicts the pathologic histology of colorectal adenoma. We retrospectively collected colonoscopic images from two tertiary hospitals and labeled 3400 images into one of 4 classes according to the final histology: normal, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma. We implemented a CAD system based on ensemble learning with three CNN models which transfer the knowledge learned from common digital photography images to the colonoscopic image domain. The deep learning models were trained to classify the colorectal adenoma into these 4 classes. We compared the outcomes of the CNN models to those of two endoscopist groups having different years of experience, and visualized the model predictions using Class Activation Mapping. In our multi-center study, our CNN-CAD system identified the histology of colorectal adenoma with as sensitivity 77.25%, specificity of 92.42%, positive predictive value of 77.16%, negative predictive value of 92.58% averaged over the 4 classes, and mean diagnostic time of 0.12 s per image. Our experiments demonstrate that the CNN-CAD showed a similar performance to that of endoscopic experts and outperformed that of trainees. The model visualization results also showed reasonable regions of interest to explain the classification decisions of CAD systems. We suggest that CNN-CAD system can predict the histology of colorectal adenoma. |
format | Online Article Text |
id | pubmed-7935886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79358862021-03-08 Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms Choi, Seong Ji Kim, Eun Sun Choi, Kihwan Sci Rep Article The treatment plan of colorectal neoplasm differs based on histology. Although new endoscopic imaging systems have been developed, there are clear diagnostic thresholds and requirements in using them. To overcome these limitations, we trained convolutional neural networks (CNNs) with endoscopic images and developed a computer-aided diagnostic (CAD) system which predicts the pathologic histology of colorectal adenoma. We retrospectively collected colonoscopic images from two tertiary hospitals and labeled 3400 images into one of 4 classes according to the final histology: normal, low-grade dysplasia, high-grade dysplasia, and adenocarcinoma. We implemented a CAD system based on ensemble learning with three CNN models which transfer the knowledge learned from common digital photography images to the colonoscopic image domain. The deep learning models were trained to classify the colorectal adenoma into these 4 classes. We compared the outcomes of the CNN models to those of two endoscopist groups having different years of experience, and visualized the model predictions using Class Activation Mapping. In our multi-center study, our CNN-CAD system identified the histology of colorectal adenoma with as sensitivity 77.25%, specificity of 92.42%, positive predictive value of 77.16%, negative predictive value of 92.58% averaged over the 4 classes, and mean diagnostic time of 0.12 s per image. Our experiments demonstrate that the CNN-CAD showed a similar performance to that of endoscopic experts and outperformed that of trainees. The model visualization results also showed reasonable regions of interest to explain the classification decisions of CAD systems. We suggest that CNN-CAD system can predict the histology of colorectal adenoma. Nature Publishing Group UK 2021-03-05 /pmc/articles/PMC7935886/ /pubmed/33674628 http://dx.doi.org/10.1038/s41598-021-84299-2 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Choi, Seong Ji Kim, Eun Sun Choi, Kihwan Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms |
title | Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms |
title_full | Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms |
title_fullStr | Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms |
title_full_unstemmed | Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms |
title_short | Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms |
title_sort | prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935886/ https://www.ncbi.nlm.nih.gov/pubmed/33674628 http://dx.doi.org/10.1038/s41598-021-84299-2 |
work_keys_str_mv | AT choiseongji predictionofthehistologyofcolorectalneoplasminwhitelightcolonoscopicimagesusingdeeplearningalgorithms AT kimeunsun predictionofthehistologyofcolorectalneoplasminwhitelightcolonoscopicimagesusingdeeplearningalgorithms AT choikihwan predictionofthehistologyofcolorectalneoplasminwhitelightcolonoscopicimagesusingdeeplearningalgorithms |