Cargando…
Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms
The treatment plan of colorectal neoplasm differs based on histology. Although new endoscopic imaging systems have been developed, there are clear diagnostic thresholds and requirements in using them. To overcome these limitations, we trained convolutional neural networks (CNNs) with endoscopic imag...
Autores principales: | Choi, Seong Ji, Kim, Eun Sun, Choi, Kihwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935886/ https://www.ncbi.nlm.nih.gov/pubmed/33674628 http://dx.doi.org/10.1038/s41598-021-84299-2 |
Ejemplares similares
-
Automated Classification of Colorectal Neoplasms in White-Light Colonoscopy Images via Deep Learning
por: Yang, Young Joo, et al.
Publicado: (2020) -
Deep learning approach to detection of colonoscopic information from unstructured reports
por: Seong, Donghyeong, et al.
Publicado: (2023) -
No-Code Platform-Based Deep-Learning Models for Prediction of Colorectal Polyp Histology from White-Light Endoscopy Images: Development and Performance Verification
por: Gong, Eun Jeong, et al.
Publicado: (2022) -
Colonoscopic Perforation Management by Laparoendoscopy: An Algorithm
por: Makarawo, Tafadzwa Patrick, et al.
Publicado: (2014) -
Anatomical distribution and detection rate of colorectal neoplasms according to age in the colonoscopic screening of a Korean population
por: Lee, Suk-young, et al.
Publicado: (2018)