Cargando…

Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from Southern California

Wildfires are becoming more frequent and destructive in a changing climate. Fine particulate matter, PM(2.5), in wildfire smoke adversely impacts human health. Recent toxicological studies suggest that wildfire particulate matter may be more toxic than equal doses of ambient PM(2.5). Air quality reg...

Descripción completa

Detalles Bibliográficos
Autores principales: Aguilera, Rosana, Corringham, Thomas, Gershunov, Alexander, Benmarhnia, Tarik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935892/
https://www.ncbi.nlm.nih.gov/pubmed/33674571
http://dx.doi.org/10.1038/s41467-021-21708-0
Descripción
Sumario:Wildfires are becoming more frequent and destructive in a changing climate. Fine particulate matter, PM(2.5), in wildfire smoke adversely impacts human health. Recent toxicological studies suggest that wildfire particulate matter may be more toxic than equal doses of ambient PM(2.5). Air quality regulations however assume that the toxicity of PM(2.5) does not vary across different sources of emission. Assessing whether PM(2.5) from wildfires is more or less harmful than PM(2.5) from other sources is a pressing public health concern. Here, we isolate the wildfire-specific PM(2.5) using a series of statistical approaches and exposure definitions. We found increases in respiratory hospitalizations ranging from 1.3 to up to 10% with a 10 μg m(−3) increase in wildfire-specific PM(2.5), compared to 0.67 to 1.3% associated with non-wildfire PM(2.5). Our conclusions point to the need for air quality policies to consider the variability in PM(2.5) impacts on human health according to the sources of emission.