Cargando…

Variable crab camouflage patterns defeat search image formation

Understanding what maintains the broad spectrum of variation in animal phenotypes and how this influences survival is a key question in biology. Frequency dependent selection – where predators temporarily focus on one morph at the expense of others by forming a “search image” – can help explain this...

Descripción completa

Detalles Bibliográficos
Autores principales: Troscianko, Jolyon, Nokelainen, Ossi, Skelhorn, John, Stevens, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935895/
https://www.ncbi.nlm.nih.gov/pubmed/33674781
http://dx.doi.org/10.1038/s42003-021-01817-8
Descripción
Sumario:Understanding what maintains the broad spectrum of variation in animal phenotypes and how this influences survival is a key question in biology. Frequency dependent selection – where predators temporarily focus on one morph at the expense of others by forming a “search image” – can help explain this phenomenon. However, past work has never tested real prey colour patterns, and rarely considered the role of different types of camouflage. Using a novel citizen science computer experiment that presented crab “prey” to humans against natural backgrounds in specific sequences, we were able to test a range of key hypotheses concerning the interactions between predator learning, camouflage and morph. As predicted, switching between morphs did hinder detection, and this effect was most pronounced when crabs had “disruptive” markings that were more effective at destroying the body outline. To our knowledge, this is the first evidence for variability in natural colour patterns hindering search image formation in predators, and as such presents a mechanism that facilitates phenotypic diversity in nature.