Cargando…

Improving gene function predictions using independent transcriptional components

The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis an...

Descripción completa

Detalles Bibliográficos
Autores principales: Urzúa-Traslaviña, Carlos G., Leeuwenburgh, Vincent C., Bhattacharya, Arkajyoti, Loipfinger, Stefan, van Vugt, Marcel A. T. M., de Vries, Elisabeth G. E., Fehrmann, Rudolf S. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935959/
https://www.ncbi.nlm.nih.gov/pubmed/33674610
http://dx.doi.org/10.1038/s41467-021-21671-w
_version_ 1783661106318802944
author Urzúa-Traslaviña, Carlos G.
Leeuwenburgh, Vincent C.
Bhattacharya, Arkajyoti
Loipfinger, Stefan
van Vugt, Marcel A. T. M.
de Vries, Elisabeth G. E.
Fehrmann, Rudolf S. N.
author_facet Urzúa-Traslaviña, Carlos G.
Leeuwenburgh, Vincent C.
Bhattacharya, Arkajyoti
Loipfinger, Stefan
van Vugt, Marcel A. T. M.
de Vries, Elisabeth G. E.
Fehrmann, Rudolf S. N.
author_sort Urzúa-Traslaviña, Carlos G.
collection PubMed
description The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal.
format Online
Article
Text
id pubmed-7935959
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79359592021-03-21 Improving gene function predictions using independent transcriptional components Urzúa-Traslaviña, Carlos G. Leeuwenburgh, Vincent C. Bhattacharya, Arkajyoti Loipfinger, Stefan van Vugt, Marcel A. T. M. de Vries, Elisabeth G. E. Fehrmann, Rudolf S. N. Nat Commun Article The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal. Nature Publishing Group UK 2021-03-05 /pmc/articles/PMC7935959/ /pubmed/33674610 http://dx.doi.org/10.1038/s41467-021-21671-w Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Urzúa-Traslaviña, Carlos G.
Leeuwenburgh, Vincent C.
Bhattacharya, Arkajyoti
Loipfinger, Stefan
van Vugt, Marcel A. T. M.
de Vries, Elisabeth G. E.
Fehrmann, Rudolf S. N.
Improving gene function predictions using independent transcriptional components
title Improving gene function predictions using independent transcriptional components
title_full Improving gene function predictions using independent transcriptional components
title_fullStr Improving gene function predictions using independent transcriptional components
title_full_unstemmed Improving gene function predictions using independent transcriptional components
title_short Improving gene function predictions using independent transcriptional components
title_sort improving gene function predictions using independent transcriptional components
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935959/
https://www.ncbi.nlm.nih.gov/pubmed/33674610
http://dx.doi.org/10.1038/s41467-021-21671-w
work_keys_str_mv AT urzuatraslavinacarlosg improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents
AT leeuwenburghvincentc improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents
AT bhattacharyaarkajyoti improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents
AT loipfingerstefan improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents
AT vanvugtmarcelatm improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents
AT devrieselisabethge improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents
AT fehrmannrudolfsn improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents