Cargando…
Improving gene function predictions using independent transcriptional components
The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis an...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935959/ https://www.ncbi.nlm.nih.gov/pubmed/33674610 http://dx.doi.org/10.1038/s41467-021-21671-w |
_version_ | 1783661106318802944 |
---|---|
author | Urzúa-Traslaviña, Carlos G. Leeuwenburgh, Vincent C. Bhattacharya, Arkajyoti Loipfinger, Stefan van Vugt, Marcel A. T. M. de Vries, Elisabeth G. E. Fehrmann, Rudolf S. N. |
author_facet | Urzúa-Traslaviña, Carlos G. Leeuwenburgh, Vincent C. Bhattacharya, Arkajyoti Loipfinger, Stefan van Vugt, Marcel A. T. M. de Vries, Elisabeth G. E. Fehrmann, Rudolf S. N. |
author_sort | Urzúa-Traslaviña, Carlos G. |
collection | PubMed |
description | The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal. |
format | Online Article Text |
id | pubmed-7935959 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-79359592021-03-21 Improving gene function predictions using independent transcriptional components Urzúa-Traslaviña, Carlos G. Leeuwenburgh, Vincent C. Bhattacharya, Arkajyoti Loipfinger, Stefan van Vugt, Marcel A. T. M. de Vries, Elisabeth G. E. Fehrmann, Rudolf S. N. Nat Commun Article The interpretation of high throughput sequencing data is limited by our incomplete functional understanding of coding and non-coding transcripts. Reliably predicting the function of such transcripts can overcome this limitation. Here we report the use of a consensus independent component analysis and guilt-by-association approach to predict over 23,000 functional groups comprised of over 55,000 coding and non-coding transcripts using publicly available transcriptomic profiles. We show that, compared to using Principal Component Analysis, Independent Component Analysis-derived transcriptional components enable more confident functionality predictions, improve predictions when new members are added to the gene sets, and are less affected by gene multi-functionality. Predictions generated using human or mouse transcriptomic data are made available for exploration in a publicly available web portal. Nature Publishing Group UK 2021-03-05 /pmc/articles/PMC7935959/ /pubmed/33674610 http://dx.doi.org/10.1038/s41467-021-21671-w Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Urzúa-Traslaviña, Carlos G. Leeuwenburgh, Vincent C. Bhattacharya, Arkajyoti Loipfinger, Stefan van Vugt, Marcel A. T. M. de Vries, Elisabeth G. E. Fehrmann, Rudolf S. N. Improving gene function predictions using independent transcriptional components |
title | Improving gene function predictions using independent transcriptional components |
title_full | Improving gene function predictions using independent transcriptional components |
title_fullStr | Improving gene function predictions using independent transcriptional components |
title_full_unstemmed | Improving gene function predictions using independent transcriptional components |
title_short | Improving gene function predictions using independent transcriptional components |
title_sort | improving gene function predictions using independent transcriptional components |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935959/ https://www.ncbi.nlm.nih.gov/pubmed/33674610 http://dx.doi.org/10.1038/s41467-021-21671-w |
work_keys_str_mv | AT urzuatraslavinacarlosg improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT leeuwenburghvincentc improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT bhattacharyaarkajyoti improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT loipfingerstefan improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT vanvugtmarcelatm improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT devrieselisabethge improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents AT fehrmannrudolfsn improvinggenefunctionpredictionsusingindependenttranscriptionalcomponents |