Cargando…
Longitudinal monitoring of multidrug resistance in Escherichia coli on broiler chicken fattening farms in Shandong, China
The extensive use of antibiotics has, in recent years, caused antimicrobial resistance and multidrug resistance in Escherichia coli to gradually develop into a worldwide problem. These resistant E. coli could be transmitted to humans through animal products and animal feces in the environment, there...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936140/ https://www.ncbi.nlm.nih.gov/pubmed/33516478 http://dx.doi.org/10.1016/j.psj.2020.11.064 |
Sumario: | The extensive use of antibiotics has, in recent years, caused antimicrobial resistance and multidrug resistance in Escherichia coli to gradually develop into a worldwide problem. These resistant E. coli could be transmitted to humans through animal products and animal feces in the environment, thereby creating a problem for bacterial treatment for humans and animals and resulting in a public health issue. Monitoring the resistance of E. coli throughout the broiler fattening period is therefore of great significance for both the poultry industry and public health. In this longitudinal study, samples were taken from 6 conventional broiler fattening farms in Shandong Province, China, at 3 different times within 1 fattening period. The overall isolation rate of E. coli was 53.04% (375/707). Antibiotic resistance was very common in the E. coli isolated from these farms, and differed for different antibiotics, with ampicillin having the highest rate (92.86%) and cefoxitin the lowest (10.12%). Multidrug resistance was as high as 91.07%. More importantly, both the resistance rate of E. coli to the different drugs and the detection rate of drug resistance genes increased over time. The mobile colistin resistance (mcr-1) gene was detected in 24.40% of the strains, and these strains often carried other drug resistance genes, such as those conferring aminoglycoside, β-lactamase, tetracycline, and sulfonamide resistance. Antimicrobial resistance and drug resistance genes in E. coli were least common in the early fattening stage. The individual detection rates of sul1, sul3, aacC4, aphA3, and mcr-1 were significantly lower (P < 0.05) for the early fattening stage than for the middle and late stages. The rational use of antibiotics, in conjunction with the improvement of the breeding environment during the entire broiler fattening cycle, will be helpful in the development of the poultry industry and the protection of public health. |
---|