Cargando…
Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19
OBJECTIVE: The COVID-19 pandemic has threatened to collapse hospital and ICU services, and it has affected the care programs for non-COVID patients. The objective was to develop a mathematical model designed to optimize predictions related to the need for hospitalization and ICU admission by COVID-1...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier España, S.L.U.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936565/ https://www.ncbi.nlm.nih.gov/pubmed/33926752 http://dx.doi.org/10.1016/j.medin.2021.02.014 |
_version_ | 1783661212396945408 |
---|---|
author | Garrido, J.M. Martínez-Rodríguez, D. Rodríguez-Serrano, F. Pérez-Villares, J.M. Ferreiro-Marzal, A. Jiménez-Quintana, M.M. Villanueva, R.J. |
author_facet | Garrido, J.M. Martínez-Rodríguez, D. Rodríguez-Serrano, F. Pérez-Villares, J.M. Ferreiro-Marzal, A. Jiménez-Quintana, M.M. Villanueva, R.J. |
author_sort | Garrido, J.M. |
collection | PubMed |
description | OBJECTIVE: The COVID-19 pandemic has threatened to collapse hospital and ICU services, and it has affected the care programs for non-COVID patients. The objective was to develop a mathematical model designed to optimize predictions related to the need for hospitalization and ICU admission by COVID-19 patients. DESIGN: Prospective study. SETTING: Province of Granada (Spain). POPULATION: COVID-19 patients hospitalized, admitted to ICU, recovered and died from March 15 to September 22, 2020. STUDY VARIABLES: The number of patients infected with SARS-CoV-2 and hospitalized or admitted to ICU for COVID-19. RESULTS: The data reported by hospitals was used to develop a mathematical model that reflects the flow of the population among the different interest groups in relation to COVID-19. This tool allows to analyse different scenarios based on socio-health restriction measures, and to forecast the number of people infected, hospitalized and admitted to the ICU. CONCLUSIONS: The mathematical model is capable of providing predictions on the evolution of the COVID-19 sufficiently in advance as to anticipate the peaks of prevalence and hospital and ICU care demands, and also the appearance of periods in which the care for non-COVID patients could be intensified. |
format | Online Article Text |
id | pubmed-7936565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Published by Elsevier España, S.L.U. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79365652021-03-08 Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19 Garrido, J.M. Martínez-Rodríguez, D. Rodríguez-Serrano, F. Pérez-Villares, J.M. Ferreiro-Marzal, A. Jiménez-Quintana, M.M. Villanueva, R.J. Med Intensiva Original OBJECTIVE: The COVID-19 pandemic has threatened to collapse hospital and ICU services, and it has affected the care programs for non-COVID patients. The objective was to develop a mathematical model designed to optimize predictions related to the need for hospitalization and ICU admission by COVID-19 patients. DESIGN: Prospective study. SETTING: Province of Granada (Spain). POPULATION: COVID-19 patients hospitalized, admitted to ICU, recovered and died from March 15 to September 22, 2020. STUDY VARIABLES: The number of patients infected with SARS-CoV-2 and hospitalized or admitted to ICU for COVID-19. RESULTS: The data reported by hospitals was used to develop a mathematical model that reflects the flow of the population among the different interest groups in relation to COVID-19. This tool allows to analyse different scenarios based on socio-health restriction measures, and to forecast the number of people infected, hospitalized and admitted to the ICU. CONCLUSIONS: The mathematical model is capable of providing predictions on the evolution of the COVID-19 sufficiently in advance as to anticipate the peaks of prevalence and hospital and ICU care demands, and also the appearance of periods in which the care for non-COVID patients could be intensified. Published by Elsevier España, S.L.U. 2022-05 2021-03-06 /pmc/articles/PMC7936565/ /pubmed/33926752 http://dx.doi.org/10.1016/j.medin.2021.02.014 Text en © 2021 Published by Elsevier España, S.L.U. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Original Garrido, J.M. Martínez-Rodríguez, D. Rodríguez-Serrano, F. Pérez-Villares, J.M. Ferreiro-Marzal, A. Jiménez-Quintana, M.M. Villanueva, R.J. Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19 |
title | Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19 |
title_full | Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19 |
title_fullStr | Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19 |
title_full_unstemmed | Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19 |
title_short | Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19 |
title_sort | modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la covid-19 |
topic | Original |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936565/ https://www.ncbi.nlm.nih.gov/pubmed/33926752 http://dx.doi.org/10.1016/j.medin.2021.02.014 |
work_keys_str_mv | AT garridojm modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19 AT martinezrodriguezd modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19 AT rodriguezserranof modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19 AT perezvillaresjm modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19 AT ferreiromarzala modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19 AT jimenezquintanamm modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19 AT modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19 AT villanuevarj modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19 |