Cargando…

Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19

OBJECTIVE: The COVID-19 pandemic has threatened to collapse hospital and ICU services, and it has affected the care programs for non-COVID patients. The objective was to develop a mathematical model designed to optimize predictions related to the need for hospitalization and ICU admission by COVID-1...

Descripción completa

Detalles Bibliográficos
Autores principales: Garrido, J.M., Martínez-Rodríguez, D., Rodríguez-Serrano, F., Pérez-Villares, J.M., Ferreiro-Marzal, A., Jiménez-Quintana, M.M., Villanueva, R.J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier España, S.L.U. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936565/
https://www.ncbi.nlm.nih.gov/pubmed/33926752
http://dx.doi.org/10.1016/j.medin.2021.02.014
_version_ 1783661212396945408
author Garrido, J.M.
Martínez-Rodríguez, D.
Rodríguez-Serrano, F.
Pérez-Villares, J.M.
Ferreiro-Marzal, A.
Jiménez-Quintana, M.M.
Villanueva, R.J.
author_facet Garrido, J.M.
Martínez-Rodríguez, D.
Rodríguez-Serrano, F.
Pérez-Villares, J.M.
Ferreiro-Marzal, A.
Jiménez-Quintana, M.M.
Villanueva, R.J.
author_sort Garrido, J.M.
collection PubMed
description OBJECTIVE: The COVID-19 pandemic has threatened to collapse hospital and ICU services, and it has affected the care programs for non-COVID patients. The objective was to develop a mathematical model designed to optimize predictions related to the need for hospitalization and ICU admission by COVID-19 patients. DESIGN: Prospective study. SETTING: Province of Granada (Spain). POPULATION: COVID-19 patients hospitalized, admitted to ICU, recovered and died from March 15 to September 22, 2020. STUDY VARIABLES: The number of patients infected with SARS-CoV-2 and hospitalized or admitted to ICU for COVID-19. RESULTS: The data reported by hospitals was used to develop a mathematical model that reflects the flow of the population among the different interest groups in relation to COVID-19. This tool allows to analyse different scenarios based on socio-health restriction measures, and to forecast the number of people infected, hospitalized and admitted to the ICU. CONCLUSIONS: The mathematical model is capable of providing predictions on the evolution of the COVID-19 sufficiently in advance as to anticipate the peaks of prevalence and hospital and ICU care demands, and also the appearance of periods in which the care for non-COVID patients could be intensified.
format Online
Article
Text
id pubmed-7936565
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Published by Elsevier España, S.L.U.
record_format MEDLINE/PubMed
spelling pubmed-79365652021-03-08 Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19 Garrido, J.M. Martínez-Rodríguez, D. Rodríguez-Serrano, F. Pérez-Villares, J.M. Ferreiro-Marzal, A. Jiménez-Quintana, M.M. Villanueva, R.J. Med Intensiva Original OBJECTIVE: The COVID-19 pandemic has threatened to collapse hospital and ICU services, and it has affected the care programs for non-COVID patients. The objective was to develop a mathematical model designed to optimize predictions related to the need for hospitalization and ICU admission by COVID-19 patients. DESIGN: Prospective study. SETTING: Province of Granada (Spain). POPULATION: COVID-19 patients hospitalized, admitted to ICU, recovered and died from March 15 to September 22, 2020. STUDY VARIABLES: The number of patients infected with SARS-CoV-2 and hospitalized or admitted to ICU for COVID-19. RESULTS: The data reported by hospitals was used to develop a mathematical model that reflects the flow of the population among the different interest groups in relation to COVID-19. This tool allows to analyse different scenarios based on socio-health restriction measures, and to forecast the number of people infected, hospitalized and admitted to the ICU. CONCLUSIONS: The mathematical model is capable of providing predictions on the evolution of the COVID-19 sufficiently in advance as to anticipate the peaks of prevalence and hospital and ICU care demands, and also the appearance of periods in which the care for non-COVID patients could be intensified. Published by Elsevier España, S.L.U. 2022-05 2021-03-06 /pmc/articles/PMC7936565/ /pubmed/33926752 http://dx.doi.org/10.1016/j.medin.2021.02.014 Text en © 2021 Published by Elsevier España, S.L.U. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Original
Garrido, J.M.
Martínez-Rodríguez, D.
Rodríguez-Serrano, F.
Pérez-Villares, J.M.
Ferreiro-Marzal, A.
Jiménez-Quintana, M.M.
Villanueva, R.J.
Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19
title Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19
title_full Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19
title_fullStr Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19
title_full_unstemmed Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19
title_short Modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la COVID-19
title_sort modelo matemático optimizado para la predicción y planificación de la asistencia sanitaria por la covid-19
topic Original
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936565/
https://www.ncbi.nlm.nih.gov/pubmed/33926752
http://dx.doi.org/10.1016/j.medin.2021.02.014
work_keys_str_mv AT garridojm modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19
AT martinezrodriguezd modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19
AT rodriguezserranof modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19
AT perezvillaresjm modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19
AT ferreiromarzala modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19
AT jimenezquintanamm modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19
AT modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19
AT villanuevarj modelomatematicooptimizadoparalaprediccionyplanificaciondelaasistenciasanitariaporlacovid19