Cargando…

New Acaciin-Loaded Self-Assembled Nanofibers as M(Pro) Inhibitors Against BCV as a Surrogate Model for SARS-CoV-2

BACKGROUND: SARS-COVID-2 has recently been one of the most life-threatening problems which urgently needs new therapeutic antiviral agents, especially those of herbal origin. PURPOSE: The study aimed to load acaciin (ACA) into the new self-assembled nanofibers (NFs) followed by investigating their p...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohamad, Soad A, Zahran, Eman Maher, Abdel Fadeel, Maha Raafat, Albohy, Amgad, Safwat, Mohamed A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936690/
https://www.ncbi.nlm.nih.gov/pubmed/33688191
http://dx.doi.org/10.2147/IJN.S298900
Descripción
Sumario:BACKGROUND: SARS-COVID-2 has recently been one of the most life-threatening problems which urgently needs new therapeutic antiviral agents, especially those of herbal origin. PURPOSE: The study aimed to load acaciin (ACA) into the new self-assembled nanofibers (NFs) followed by investigating their possible antiviral effect against bovine coronavirus (BCV) as a surrogate model for SARS-COV-2. METHODS: ACA was identified using (1)H-NMR and DEPT-Q (13)C-NMR spectroscopy, the molecular docking study was performed using Autodock 4 and a modification of the traditional solvent injection method was applied for the synthesis of the biodegradable NFs. Different characterization techniques were used to inspect the formation of the NFs, which is followed by antiviral investigation against BCV as well as MTT assay using MDBK cells. RESULTS: Core/shell NFs, ranging between 80–330 nm with tiny thorn-like branches, were formed which attained an enhanced encapsulation efficiency (97.5 ± 0.53%, P<0.05) and a dual controlled release (a burst release of 65% at 1 h and a sustained release up to >24 h). The antiviral investigation of the formed NFs revealed a significant inhibition of 98.88 ± 0.16% (P<0.05) with IC(50) of 12.6 µM against BCV cells. CONCLUSION: The results introduced a new, time/cost-saving strategy for the synthesis of biodegradable NFs without the need for electric current or hazardous cross-linking agents. Moreover, it provided an innovative avenue for the discovery of drugs of herbal origin for the fight against SARS-CoV-2 infection.