Cargando…
R.ROSETTA: an interpretable machine learning framework
BACKGROUND: Machine learning involves strategies and algorithms that may assist bioinformatics analyses in terms of data mining and knowledge discovery. In several applications, viz. in Life Sciences, it is often more important to understand how a prediction was obtained rather than knowing what pre...
Autores principales: | Garbulowski, Mateusz, Diamanti, Klev, Smolińska, Karolina, Baltzer, Nicholas, Stoll, Patricia, Bornelöv, Susanne, Øhrn, Aleksander, Feuk, Lars, Komorowski, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937228/ https://www.ncbi.nlm.nih.gov/pubmed/33676405 http://dx.doi.org/10.1186/s12859-021-04049-z |
Ejemplares similares
-
Interpretable Machine Learning Reveals Dissimilarities Between Subtypes of Autism Spectrum Disorder
por: Garbulowski, Mateusz, et al.
Publicado: (2021) -
Machine Learning-Based Analysis of Glioma Grades Reveals Co-Enrichment
por: Garbulowski, Mateusz, et al.
Publicado: (2022) -
Interpretable machine learning identifies paediatric Systemic Lupus Erythematosus subtypes based on gene expression data
por: Yones, Sara A., et al.
Publicado: (2022) -
FACT – a framework for the functional interpretation of high-throughput experiments
por: Kokocinski, Felix, et al.
Publicado: (2005) -
Computing structure-based lipid accessibility of membrane proteins with mp_lipid_acc in RosettaMP
por: Koehler Leman, Julia, et al.
Publicado: (2017)