Cargando…

Intestinal expression of ACE2 in mice with high-fat diet–induced obesity and neonates exposed to maternal high-fat diet

OBJECTIVE: The 2019 novel coronavirus disease (COVID-19) is threatening global health and is especially pronounced in patients with chronic metabolic syndromes. Meanwhile, a significant proportion of patients present with digestive symptoms since angiotensin-converting enzyme 2 (ACE2), which is the...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Jia, Chen, Luo, Xiao, Xiao-Ao, Jia, Mo-Qiu, Wang, Xin-Yuan, Jiao, Han, Gao, Yuanqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937331/
https://www.ncbi.nlm.nih.gov/pubmed/33965680
http://dx.doi.org/10.1016/j.nut.2021.111226
Descripción
Sumario:OBJECTIVE: The 2019 novel coronavirus disease (COVID-19) is threatening global health and is especially pronounced in patients with chronic metabolic syndromes. Meanwhile, a significant proportion of patients present with digestive symptoms since angiotensin-converting enzyme 2 (ACE2), which is the receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is highly expressed in the intestine. The aim of this study was to evaluate the effects of a high-fat diet (HFD) and a maternal HFD on the intestinal ACE2 levels in adults and neonates. METHODS: We examined intestinal ACE2 protein levels in mice with diet-induced obesity (DIO) and neonatal mice exposed to a maternal HFD. We also investigated Ace2 mRNA expression in intestinal macrophages. RESULTS: Intestinal ACE2 protein levels were increased in DIO mice but decreased in offspring exposed to a maternal HFD compared with chow-fed controls. Ace2 mRNA expression in intestinal macrophages was detected and downregulated in DIO mice. Additionally, higher intestinal ACE2 protein levels were observed in neonates than in adult mice. CONCLUSIONS: The influence of an HFD on intestinal ACE2 protein levels is opposite in adults and neonates. Macrophages might also be involved in SARS-CoV-2 intestinal infection. These findings provide some clues for the outcomes of patients with COVID-19 with metabolic syndromes.