Cargando…

Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions

The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreno-Indias, Isabel, Lahti, Leo, Nedyalkova, Miroslava, Elbere, Ilze, Roshchupkin, Gennady, Adilovic, Muhamed, Aydemir, Onder, Bakir-Gungor, Burcu, Santa Pau, Enrique Carrillo-de, D’Elia, Domenica, Desai, Mahesh S., Falquet, Laurent, Gundogdu, Aycan, Hron, Karel, Klammsteiner, Thomas, Lopes, Marta B., Marcos-Zambrano, Laura Judith, Marques, Cláudia, Mason, Michael, May, Patrick, Pašić, Lejla, Pio, Gianvito, Pongor, Sándor, Promponas, Vasilis J., Przymus, Piotr, Saez-Rodriguez, Julio, Sampri, Alexia, Shigdel, Rajesh, Stres, Blaz, Suharoschi, Ramona, Truu, Jaak, Truică, Ciprian-Octavian, Vilne, Baiba, Vlachakis, Dimitrios, Yilmaz, Ercument, Zeller, Georg, Zomer, Aldert L., Gómez-Cabrero, David, Claesson, Marcus J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937616/
https://www.ncbi.nlm.nih.gov/pubmed/33692771
http://dx.doi.org/10.3389/fmicb.2021.635781
_version_ 1783661429567520768
author Moreno-Indias, Isabel
Lahti, Leo
Nedyalkova, Miroslava
Elbere, Ilze
Roshchupkin, Gennady
Adilovic, Muhamed
Aydemir, Onder
Bakir-Gungor, Burcu
Santa Pau, Enrique Carrillo-de
D’Elia, Domenica
Desai, Mahesh S.
Falquet, Laurent
Gundogdu, Aycan
Hron, Karel
Klammsteiner, Thomas
Lopes, Marta B.
Marcos-Zambrano, Laura Judith
Marques, Cláudia
Mason, Michael
May, Patrick
Pašić, Lejla
Pio, Gianvito
Pongor, Sándor
Promponas, Vasilis J.
Przymus, Piotr
Saez-Rodriguez, Julio
Sampri, Alexia
Shigdel, Rajesh
Stres, Blaz
Suharoschi, Ramona
Truu, Jaak
Truică, Ciprian-Octavian
Vilne, Baiba
Vlachakis, Dimitrios
Yilmaz, Ercument
Zeller, Georg
Zomer, Aldert L.
Gómez-Cabrero, David
Claesson, Marcus J.
author_facet Moreno-Indias, Isabel
Lahti, Leo
Nedyalkova, Miroslava
Elbere, Ilze
Roshchupkin, Gennady
Adilovic, Muhamed
Aydemir, Onder
Bakir-Gungor, Burcu
Santa Pau, Enrique Carrillo-de
D’Elia, Domenica
Desai, Mahesh S.
Falquet, Laurent
Gundogdu, Aycan
Hron, Karel
Klammsteiner, Thomas
Lopes, Marta B.
Marcos-Zambrano, Laura Judith
Marques, Cláudia
Mason, Michael
May, Patrick
Pašić, Lejla
Pio, Gianvito
Pongor, Sándor
Promponas, Vasilis J.
Przymus, Piotr
Saez-Rodriguez, Julio
Sampri, Alexia
Shigdel, Rajesh
Stres, Blaz
Suharoschi, Ramona
Truu, Jaak
Truică, Ciprian-Octavian
Vilne, Baiba
Vlachakis, Dimitrios
Yilmaz, Ercument
Zeller, Georg
Zomer, Aldert L.
Gómez-Cabrero, David
Claesson, Marcus J.
author_sort Moreno-Indias, Isabel
collection PubMed
description The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies.
format Online
Article
Text
id pubmed-7937616
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-79376162021-03-09 Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions Moreno-Indias, Isabel Lahti, Leo Nedyalkova, Miroslava Elbere, Ilze Roshchupkin, Gennady Adilovic, Muhamed Aydemir, Onder Bakir-Gungor, Burcu Santa Pau, Enrique Carrillo-de D’Elia, Domenica Desai, Mahesh S. Falquet, Laurent Gundogdu, Aycan Hron, Karel Klammsteiner, Thomas Lopes, Marta B. Marcos-Zambrano, Laura Judith Marques, Cláudia Mason, Michael May, Patrick Pašić, Lejla Pio, Gianvito Pongor, Sándor Promponas, Vasilis J. Przymus, Piotr Saez-Rodriguez, Julio Sampri, Alexia Shigdel, Rajesh Stres, Blaz Suharoschi, Ramona Truu, Jaak Truică, Ciprian-Octavian Vilne, Baiba Vlachakis, Dimitrios Yilmaz, Ercument Zeller, Georg Zomer, Aldert L. Gómez-Cabrero, David Claesson, Marcus J. Front Microbiol Microbiology The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies. Frontiers Media S.A. 2021-02-22 /pmc/articles/PMC7937616/ /pubmed/33692771 http://dx.doi.org/10.3389/fmicb.2021.635781 Text en Copyright © 2021 Moreno-Indias, Lahti, Nedyalkova, Elbere, Roshchupkin, Adilovic, Aydemir, Bakir-Gungor, Santa Pau, D’Elia, Desai, Falquet, Gundogdu, Hron, Klammsteiner, Lopes, Marcos-Zambrano, Marques, Mason, May, Pašić, Pio, Pongor, Promponas, Przymus, Saez-Rodriguez, Sampri, Shigdel, Stres, Suharoschi, Truu, Truică, Vilne, Vlachakis, Yilmaz, Zeller, Zomer, Gómez-Cabrero and Claesson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Moreno-Indias, Isabel
Lahti, Leo
Nedyalkova, Miroslava
Elbere, Ilze
Roshchupkin, Gennady
Adilovic, Muhamed
Aydemir, Onder
Bakir-Gungor, Burcu
Santa Pau, Enrique Carrillo-de
D’Elia, Domenica
Desai, Mahesh S.
Falquet, Laurent
Gundogdu, Aycan
Hron, Karel
Klammsteiner, Thomas
Lopes, Marta B.
Marcos-Zambrano, Laura Judith
Marques, Cláudia
Mason, Michael
May, Patrick
Pašić, Lejla
Pio, Gianvito
Pongor, Sándor
Promponas, Vasilis J.
Przymus, Piotr
Saez-Rodriguez, Julio
Sampri, Alexia
Shigdel, Rajesh
Stres, Blaz
Suharoschi, Ramona
Truu, Jaak
Truică, Ciprian-Octavian
Vilne, Baiba
Vlachakis, Dimitrios
Yilmaz, Ercument
Zeller, Georg
Zomer, Aldert L.
Gómez-Cabrero, David
Claesson, Marcus J.
Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions
title Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions
title_full Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions
title_fullStr Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions
title_full_unstemmed Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions
title_short Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions
title_sort statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937616/
https://www.ncbi.nlm.nih.gov/pubmed/33692771
http://dx.doi.org/10.3389/fmicb.2021.635781
work_keys_str_mv AT morenoindiasisabel statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT lahtileo statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT nedyalkovamiroslava statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT elbereilze statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT roshchupkingennady statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT adilovicmuhamed statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT aydemironder statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT bakirgungorburcu statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT santapauenriquecarrillode statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT deliadomenica statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT desaimaheshs statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT falquetlaurent statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT gundogduaycan statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT hronkarel statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT klammsteinerthomas statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT lopesmartab statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT marcoszambranolaurajudith statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT marquesclaudia statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT masonmichael statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT maypatrick statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT pasiclejla statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT piogianvito statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT pongorsandor statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT promponasvasilisj statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT przymuspiotr statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT saezrodriguezjulio statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT samprialexia statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT shigdelrajesh statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT stresblaz statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT suharoschiramona statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT truujaak statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT truicaciprianoctavian statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT vilnebaiba statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT vlachakisdimitrios statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT yilmazercument statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT zellergeorg statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT zomeraldertl statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT gomezcabrerodavid statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions
AT claessonmarcusj statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions