Cargando…
Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions
The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937616/ https://www.ncbi.nlm.nih.gov/pubmed/33692771 http://dx.doi.org/10.3389/fmicb.2021.635781 |
_version_ | 1783661429567520768 |
---|---|
author | Moreno-Indias, Isabel Lahti, Leo Nedyalkova, Miroslava Elbere, Ilze Roshchupkin, Gennady Adilovic, Muhamed Aydemir, Onder Bakir-Gungor, Burcu Santa Pau, Enrique Carrillo-de D’Elia, Domenica Desai, Mahesh S. Falquet, Laurent Gundogdu, Aycan Hron, Karel Klammsteiner, Thomas Lopes, Marta B. Marcos-Zambrano, Laura Judith Marques, Cláudia Mason, Michael May, Patrick Pašić, Lejla Pio, Gianvito Pongor, Sándor Promponas, Vasilis J. Przymus, Piotr Saez-Rodriguez, Julio Sampri, Alexia Shigdel, Rajesh Stres, Blaz Suharoschi, Ramona Truu, Jaak Truică, Ciprian-Octavian Vilne, Baiba Vlachakis, Dimitrios Yilmaz, Ercument Zeller, Georg Zomer, Aldert L. Gómez-Cabrero, David Claesson, Marcus J. |
author_facet | Moreno-Indias, Isabel Lahti, Leo Nedyalkova, Miroslava Elbere, Ilze Roshchupkin, Gennady Adilovic, Muhamed Aydemir, Onder Bakir-Gungor, Burcu Santa Pau, Enrique Carrillo-de D’Elia, Domenica Desai, Mahesh S. Falquet, Laurent Gundogdu, Aycan Hron, Karel Klammsteiner, Thomas Lopes, Marta B. Marcos-Zambrano, Laura Judith Marques, Cláudia Mason, Michael May, Patrick Pašić, Lejla Pio, Gianvito Pongor, Sándor Promponas, Vasilis J. Przymus, Piotr Saez-Rodriguez, Julio Sampri, Alexia Shigdel, Rajesh Stres, Blaz Suharoschi, Ramona Truu, Jaak Truică, Ciprian-Octavian Vilne, Baiba Vlachakis, Dimitrios Yilmaz, Ercument Zeller, Georg Zomer, Aldert L. Gómez-Cabrero, David Claesson, Marcus J. |
author_sort | Moreno-Indias, Isabel |
collection | PubMed |
description | The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies. |
format | Online Article Text |
id | pubmed-7937616 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79376162021-03-09 Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions Moreno-Indias, Isabel Lahti, Leo Nedyalkova, Miroslava Elbere, Ilze Roshchupkin, Gennady Adilovic, Muhamed Aydemir, Onder Bakir-Gungor, Burcu Santa Pau, Enrique Carrillo-de D’Elia, Domenica Desai, Mahesh S. Falquet, Laurent Gundogdu, Aycan Hron, Karel Klammsteiner, Thomas Lopes, Marta B. Marcos-Zambrano, Laura Judith Marques, Cláudia Mason, Michael May, Patrick Pašić, Lejla Pio, Gianvito Pongor, Sándor Promponas, Vasilis J. Przymus, Piotr Saez-Rodriguez, Julio Sampri, Alexia Shigdel, Rajesh Stres, Blaz Suharoschi, Ramona Truu, Jaak Truică, Ciprian-Octavian Vilne, Baiba Vlachakis, Dimitrios Yilmaz, Ercument Zeller, Georg Zomer, Aldert L. Gómez-Cabrero, David Claesson, Marcus J. Front Microbiol Microbiology The human microbiome has emerged as a central research topic in human biology and biomedicine. Current microbiome studies generate high-throughput omics data across different body sites, populations, and life stages. Many of the challenges in microbiome research are similar to other high-throughput studies, the quantitative analyses need to address the heterogeneity of data, specific statistical properties, and the remarkable variation in microbiome composition across individuals and body sites. This has led to a broad spectrum of statistical and machine learning challenges that range from study design, data processing, and standardization to analysis, modeling, cross-study comparison, prediction, data science ecosystems, and reproducible reporting. Nevertheless, although many statistics and machine learning approaches and tools have been developed, new techniques are needed to deal with emerging applications and the vast heterogeneity of microbiome data. We review and discuss emerging applications of statistical and machine learning techniques in human microbiome studies and introduce the COST Action CA18131 “ML4Microbiome” that brings together microbiome researchers and machine learning experts to address current challenges such as standardization of analysis pipelines for reproducibility of data analysis results, benchmarking, improvement, or development of existing and new tools and ontologies. Frontiers Media S.A. 2021-02-22 /pmc/articles/PMC7937616/ /pubmed/33692771 http://dx.doi.org/10.3389/fmicb.2021.635781 Text en Copyright © 2021 Moreno-Indias, Lahti, Nedyalkova, Elbere, Roshchupkin, Adilovic, Aydemir, Bakir-Gungor, Santa Pau, D’Elia, Desai, Falquet, Gundogdu, Hron, Klammsteiner, Lopes, Marcos-Zambrano, Marques, Mason, May, Pašić, Pio, Pongor, Promponas, Przymus, Saez-Rodriguez, Sampri, Shigdel, Stres, Suharoschi, Truu, Truică, Vilne, Vlachakis, Yilmaz, Zeller, Zomer, Gómez-Cabrero and Claesson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Moreno-Indias, Isabel Lahti, Leo Nedyalkova, Miroslava Elbere, Ilze Roshchupkin, Gennady Adilovic, Muhamed Aydemir, Onder Bakir-Gungor, Burcu Santa Pau, Enrique Carrillo-de D’Elia, Domenica Desai, Mahesh S. Falquet, Laurent Gundogdu, Aycan Hron, Karel Klammsteiner, Thomas Lopes, Marta B. Marcos-Zambrano, Laura Judith Marques, Cláudia Mason, Michael May, Patrick Pašić, Lejla Pio, Gianvito Pongor, Sándor Promponas, Vasilis J. Przymus, Piotr Saez-Rodriguez, Julio Sampri, Alexia Shigdel, Rajesh Stres, Blaz Suharoschi, Ramona Truu, Jaak Truică, Ciprian-Octavian Vilne, Baiba Vlachakis, Dimitrios Yilmaz, Ercument Zeller, Georg Zomer, Aldert L. Gómez-Cabrero, David Claesson, Marcus J. Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions |
title | Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions |
title_full | Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions |
title_fullStr | Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions |
title_full_unstemmed | Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions |
title_short | Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions |
title_sort | statistical and machine learning techniques in human microbiome studies: contemporary challenges and solutions |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937616/ https://www.ncbi.nlm.nih.gov/pubmed/33692771 http://dx.doi.org/10.3389/fmicb.2021.635781 |
work_keys_str_mv | AT morenoindiasisabel statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT lahtileo statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT nedyalkovamiroslava statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT elbereilze statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT roshchupkingennady statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT adilovicmuhamed statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT aydemironder statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT bakirgungorburcu statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT santapauenriquecarrillode statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT deliadomenica statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT desaimaheshs statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT falquetlaurent statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT gundogduaycan statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT hronkarel statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT klammsteinerthomas statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT lopesmartab statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT marcoszambranolaurajudith statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT marquesclaudia statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT masonmichael statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT maypatrick statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT pasiclejla statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT piogianvito statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT pongorsandor statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT promponasvasilisj statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT przymuspiotr statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT saezrodriguezjulio statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT samprialexia statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT shigdelrajesh statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT stresblaz statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT suharoschiramona statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT truujaak statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT truicaciprianoctavian statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT vilnebaiba statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT vlachakisdimitrios statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT yilmazercument statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT zellergeorg statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT zomeraldertl statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT gomezcabrerodavid statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions AT claessonmarcusj statisticalandmachinelearningtechniquesinhumanmicrobiomestudiescontemporarychallengesandsolutions |