Cargando…

Increased accumulation of isoflavonoids in common bean (Phaseolus vulgaris L.) tissues treated with 1-oxo-indane-4-carboxylic acid derivatives

Isoflavonoid phytoalexins (isoflavones: genistein, 2′-hydroxygenistein, and daidzein; isoflavanones: dalbergioidin and kievitone; coumestrol; pterocarpans: phaseollidin and phaseollin; and the isoflavan: phaseollinisoflavan) production in response to the application of eleven 1-oxo-indane-4-carboxyl...

Descripción completa

Detalles Bibliográficos
Autores principales: Botero, Leidy, Vizcaíno, Samuel, Quiñones, Winston, Echeverri, Fernando, Gil, Jesús, Durango, Diego
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937663/
https://www.ncbi.nlm.nih.gov/pubmed/33732630
http://dx.doi.org/10.1016/j.btre.2021.e00601
Descripción
Sumario:Isoflavonoid phytoalexins (isoflavones: genistein, 2′-hydroxygenistein, and daidzein; isoflavanones: dalbergioidin and kievitone; coumestrol; pterocarpans: phaseollidin and phaseollin; and the isoflavan: phaseollinisoflavan) production in response to the application of eleven 1-oxo-indane-4-carboxylic acid derivatives (indanoyl esters and indanoyl amino acids conjugates), in cotyledons and hypocotyl/root of two common bean (Phaseolus vulgaris L.) cultivars was evaluated. The content of isoflavonoids depended on the cultivar, the treated tissue, the time after induction, the structure and concentration of the elicitor. The highest isoflavonoid contents were found when 1-oxo-indanoyl-amino acids conjugates were used as elicitors. Cotyledons and hypocotyl/root of the anthracnose-resistant cultivar produced significantly higher isoflavonoid contents as compared to the susceptible one. Maximum levels of phaseollin were obtained using 0.66 mM 1-oxo-indanoyl-l-isoleucyl methyl ester and between 72 and 96 h post-induction. So, 1-oxo-indane-4-carboxylic acid derivatives, may be used to enhance the amount of isoflavonoid phytoalexins in common bean and protect crops from phytopathogenic microorganisms.