Cargando…
Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density
Remote neurodegenerative changes in supraspinal white matter (WM) can manifest after central lesions such as spinal cord injury (SCI). The majority of diffusion tensor imaging (DTI) studies use traditional metrics such as fractional anisotropy (FA) and mean diffusivity (MD) to investigate microstruc...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937730/ https://www.ncbi.nlm.nih.gov/pubmed/33692736 http://dx.doi.org/10.3389/fneur.2021.598336 |
_version_ | 1783661453228638208 |
---|---|
author | Huynh, Vincent Staempfli, Philipp Luetolf, Robin Luechinger, Roger Curt, Armin Kollias, Spyros Hubli, Michèle Michels, Lars |
author_facet | Huynh, Vincent Staempfli, Philipp Luetolf, Robin Luechinger, Roger Curt, Armin Kollias, Spyros Hubli, Michèle Michels, Lars |
author_sort | Huynh, Vincent |
collection | PubMed |
description | Remote neurodegenerative changes in supraspinal white matter (WM) can manifest after central lesions such as spinal cord injury (SCI). The majority of diffusion tensor imaging (DTI) studies use traditional metrics such as fractional anisotropy (FA) and mean diffusivity (MD) to investigate microstructural changes in cerebral WM after SCI. However, interpretation of FA readouts is often challenged by inherent limitations of the tensor model. Recent developments in novel diffusion markers, such as fiber density (FD), allows more accurate depictions of WM pathways and has shown more reliable quantification of WM alterations compared to FA in recent studies of neurological diseases. This study investigated if FD provides useful characterization of supraspinal WM integrity after SCI in addition to the traditional DTI readouts. FA, MD, and FD maps were derived from diffusion datasets of 20 patients with chronic SCI and compared with 19 healthy controls (HC). Group differences were investigated across whole brain WM using tract-based spatial statistics and averaged diffusion values of the corticospinal tract (CST) and thalamic radiation (TR) were extracted for comparisons between HC and SCI subgroups. We also related diffusion readouts of the CST and TR with clinical scores of sensorimotor function. To investigate which diffusion markers of the CST and TR delineate HC and patients with SCI a receiver operating characteristic (ROC) analysis was performed. Overall, patients with an SCI showed decreased FA of the TR and CST. ROC analysis differentiated HC and SCI based on diffusion markers of large WM tracts including FD of the TR. Furthermore, patients' motor function was positively correlated with greater microstructural integrity of the CST. While FD showed the strongest correlation, motor function was also associated with FA and MD of the CST. In summary, microstructural changes of supraspinal WM in patients with SCI can be detected using FD as a complementary marker to traditional DTI readouts and correlates with their clinical characteristics. Future DTI studies may benefit from utilizing this novel marker to investigate complex large WM tracts in patient cohorts with varying presentations of SCI or neurodegenerative diseases. |
format | Online Article Text |
id | pubmed-7937730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-79377302021-03-09 Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density Huynh, Vincent Staempfli, Philipp Luetolf, Robin Luechinger, Roger Curt, Armin Kollias, Spyros Hubli, Michèle Michels, Lars Front Neurol Neurology Remote neurodegenerative changes in supraspinal white matter (WM) can manifest after central lesions such as spinal cord injury (SCI). The majority of diffusion tensor imaging (DTI) studies use traditional metrics such as fractional anisotropy (FA) and mean diffusivity (MD) to investigate microstructural changes in cerebral WM after SCI. However, interpretation of FA readouts is often challenged by inherent limitations of the tensor model. Recent developments in novel diffusion markers, such as fiber density (FD), allows more accurate depictions of WM pathways and has shown more reliable quantification of WM alterations compared to FA in recent studies of neurological diseases. This study investigated if FD provides useful characterization of supraspinal WM integrity after SCI in addition to the traditional DTI readouts. FA, MD, and FD maps were derived from diffusion datasets of 20 patients with chronic SCI and compared with 19 healthy controls (HC). Group differences were investigated across whole brain WM using tract-based spatial statistics and averaged diffusion values of the corticospinal tract (CST) and thalamic radiation (TR) were extracted for comparisons between HC and SCI subgroups. We also related diffusion readouts of the CST and TR with clinical scores of sensorimotor function. To investigate which diffusion markers of the CST and TR delineate HC and patients with SCI a receiver operating characteristic (ROC) analysis was performed. Overall, patients with an SCI showed decreased FA of the TR and CST. ROC analysis differentiated HC and SCI based on diffusion markers of large WM tracts including FD of the TR. Furthermore, patients' motor function was positively correlated with greater microstructural integrity of the CST. While FD showed the strongest correlation, motor function was also associated with FA and MD of the CST. In summary, microstructural changes of supraspinal WM in patients with SCI can be detected using FD as a complementary marker to traditional DTI readouts and correlates with their clinical characteristics. Future DTI studies may benefit from utilizing this novel marker to investigate complex large WM tracts in patient cohorts with varying presentations of SCI or neurodegenerative diseases. Frontiers Media S.A. 2021-02-22 /pmc/articles/PMC7937730/ /pubmed/33692736 http://dx.doi.org/10.3389/fneur.2021.598336 Text en Copyright © 2021 Huynh, Staempfli, Luetolf, Luechinger, Curt, Kollias, Hubli and Michels. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Huynh, Vincent Staempfli, Philipp Luetolf, Robin Luechinger, Roger Curt, Armin Kollias, Spyros Hubli, Michèle Michels, Lars Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density |
title | Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density |
title_full | Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density |
title_fullStr | Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density |
title_full_unstemmed | Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density |
title_short | Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density |
title_sort | investigation of cerebral white matter changes after spinal cord injury with a measure of fiber density |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937730/ https://www.ncbi.nlm.nih.gov/pubmed/33692736 http://dx.doi.org/10.3389/fneur.2021.598336 |
work_keys_str_mv | AT huynhvincent investigationofcerebralwhitematterchangesafterspinalcordinjurywithameasureoffiberdensity AT staempfliphilipp investigationofcerebralwhitematterchangesafterspinalcordinjurywithameasureoffiberdensity AT luetolfrobin investigationofcerebralwhitematterchangesafterspinalcordinjurywithameasureoffiberdensity AT luechingerroger investigationofcerebralwhitematterchangesafterspinalcordinjurywithameasureoffiberdensity AT curtarmin investigationofcerebralwhitematterchangesafterspinalcordinjurywithameasureoffiberdensity AT kolliasspyros investigationofcerebralwhitematterchangesafterspinalcordinjurywithameasureoffiberdensity AT hublimichele investigationofcerebralwhitematterchangesafterspinalcordinjurywithameasureoffiberdensity AT michelslars investigationofcerebralwhitematterchangesafterspinalcordinjurywithameasureoffiberdensity |