Cargando…

Comparative analysis of extracellular proteomes reveals putative effectors of the boxwood blight pathogens, Calonectria henricotiae and C. pseudonaviculata

Calonectria henricotiae (Che) and C. pseudonaviculata (Cps) are destructive fungal pathogens causing boxwood blight, a persistent threat to horticultural production, landscape industries, established gardens, and native ecosystems. Although extracellular proteins including effectors produced by fung...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Xiao, McMahon, Michael B., Ramachandran, Sowmya R., Garrett, Wesley M., LeBlanc, Nicholas, Crouch, Jo Anne, Shishkoff, Nina, Luster, Douglas G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7937907/
https://www.ncbi.nlm.nih.gov/pubmed/33619567
http://dx.doi.org/10.1042/BSR20203544
Descripción
Sumario:Calonectria henricotiae (Che) and C. pseudonaviculata (Cps) are destructive fungal pathogens causing boxwood blight, a persistent threat to horticultural production, landscape industries, established gardens, and native ecosystems. Although extracellular proteins including effectors produced by fungal pathogens are known to play a fundamental role in pathogenesis, the composition of Che and Cps extracellular proteins has not been examined. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and bioinformatics prediction tools, 630 extracellular proteins and 251 cell membrane proteins of Che and Cps were identified in the classical secretion pathway in the present study. In the non-classical secretion pathway, 79 extracellular proteins were identified. The cohort of proteins belonged to 364 OrthoMCL clusters, with the majority (62%) present in both species, and a subset unique to Che (19%) and Cps (20%). These extracellular proteins were predicted to play important roles in cell structure, regulation, metabolism, and pathogenesis. A total of 124 proteins were identified as putative effectors. Many of them are orthologs of proteins with documented roles in suppressing host defense and facilitating infection processes in other pathosystems, such as SnodProt1-like proteins in the OrthoMCL cluster OG5_152723 and PhiA-like cell wall proteins in the cluster OG5_155754. This exploratory study provides a repository of secreted proteins and putative effectors that can provide insights into the virulence mechanisms of the boxwood blight pathogens.