Cargando…

Effect of thiamazole on kainic acid-induced seizures in mice

Kainic acid (KA) induced epileptic seizures in mice is a commonly used experimental model of epilepsy. Previous studies have suggested the roles of various neurotransmitters and oxidative stress in KA-induced seizures. An important role of hypothyroidism has also been suggested in epilepsy. Thiamazo...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Jigao, Hao, Zheng, Zhang, Xian, Li, Mingxia, zhong, Wuzhao, Zhang, Caicai, Gharawi, Ali, Alrashood, Sara T., Khan, Haseeb A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938111/
https://www.ncbi.nlm.nih.gov/pubmed/33732070
http://dx.doi.org/10.1016/j.sjbs.2020.12.033
Descripción
Sumario:Kainic acid (KA) induced epileptic seizures in mice is a commonly used experimental model of epilepsy. Previous studies have suggested the roles of various neurotransmitters and oxidative stress in KA-induced seizures. An important role of hypothyroidism has also been suggested in epilepsy. Thiamazole (TZ) is an anti-hyperthyroid drug with antioxidant property. This study reports the effect of TZ on KA-induced epileptic seizures in mice, produced by intraperitoneal (IP) injection of KA (18 mg/kg). Prior to KA injection, the animals were treated with TZ (12.5, 25 and 50 mg/kg IP). Our results showed that in KA alone group, about half of the animals developed seizures. Pre-treatment of mice with TZ significantly increased the frequency of seizures in dose-dependent manner. Administration of TZ significantly reduced the latency time and aggravated the severity of seizures. TZ also increased the mortality in KA-treated mice. Striatal dopamine and serotonin levels were markedly increased in KA alone treated mice, which were not significantly affected by TZ treatment. Among the indices of oxidative stress, we observed a significant reduction in cerebral vitamin E whereas the levels of cerebral malondialdehyde and conjugated dienes were significantly increased in animals with high severity of seizures. In conclusion, TZ potentiated the frequency and severity of experimental seizure in mice. There is a possibility of altered metabolism of KA in presence of TZ that might have potentiated the toxicity of KA. These findings suggest a caution while administering anti-hyperthyroid drugs in epileptic seizures.