Cargando…
Communication from the cerebellum to the neocortex during sleep spindles
Surprisingly little is known about neural activity in the sleeping cerebellum. Using long-term wireless recording, we characterised dynamic cerebro-thalamo-cerebellar interactions during natural sleep in monkeys. Similar sleep cycles were evident in both M1 and cerebellum as cyclical fluctuations in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938225/ https://www.ncbi.nlm.nih.gov/pubmed/33161064 http://dx.doi.org/10.1016/j.pneurobio.2020.101940 |
Sumario: | Surprisingly little is known about neural activity in the sleeping cerebellum. Using long-term wireless recording, we characterised dynamic cerebro-thalamo-cerebellar interactions during natural sleep in monkeys. Similar sleep cycles were evident in both M1 and cerebellum as cyclical fluctuations in firing rates as well as a reciprocal pattern of slow waves and sleep spindles. Directed connectivity from motor cortex to the cerebellum suggested a neocortical origin of slow waves. Surprisingly however, spindles were associated with a directional influence from the cerebellum to motor cortex, conducted via the thalamus. Furthermore, the relative phase of spindle-band oscillations in the neocortex and cerebellum varied systematically with their changing amplitudes. We used linear dynamical systems analysis to show that this behaviour could only be explained by a system of two coupled oscillators. These observations appear inconsistent with a single spindle generator within the thalamo-cortical system, and suggest instead a cerebellar contribution to neocortical sleep spindles. Since spindles are implicated in the off-line consolidation of procedural learning, we speculate that this may involve communication via cerebello-thalamo-neocortical pathways in sleep. |
---|