Cargando…
Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework
BACKGROUND: The results of studies on observational associations may vary depending on the study design and analysis choices as well as due to measurement error. It is important to understand the relative contribution of different factors towards generating variable results, including low sample siz...
Autores principales: | Klau, Simon, Hoffmann, Sabine, Patel, Chirag J, Ioannidis, John PA, Boulesteix, Anne-Laure |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938511/ https://www.ncbi.nlm.nih.gov/pubmed/33147614 http://dx.doi.org/10.1093/ije/dyaa164 |
Ejemplares similares
-
BANDITS: Bayesian differential splicing accounting for sample-to-sample variability and mapping uncertainty
por: Tiberi, Simone, et al.
Publicado: (2020) -
Leveraging vibration of effects analysis for robust discovery in observational biomedical data science
por: Tierney, Braden T., et al.
Publicado: (2021) -
SampleQC: robust multivariate, multi-cell type, multi-sample quality control for single-cell data
por: Macnair, Will, et al.
Publicado: (2023) -
A robust and adaptive framework for interaction testing in quantitative traits between multiple genetic loci and exposure variables
por: Hecker, Julian, et al.
Publicado: (2022) -
Priority-Lasso: a simple hierarchical approach to the prediction of clinical outcome using multi-omics data
por: Klau, Simon, et al.
Publicado: (2018)