Cargando…
Magnetic resonance imaging follow-up can screen for soft tissue changes and evaluate the short-term prognosis of patients with developmental dysplasia of the hip after closed reduction
BACKGROUND: Magnetic resonance imaging (MRI) can show the architecture of the hip joint clearly and has been increasingly used in developmental dysplasia of the hip (DDH) confirmation and follow-up. In this study, MRI was used to observe changes in the hip joints before and after closed reduction (C...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938578/ https://www.ncbi.nlm.nih.gov/pubmed/33685416 http://dx.doi.org/10.1186/s12887-021-02587-2 |
Sumario: | BACKGROUND: Magnetic resonance imaging (MRI) can show the architecture of the hip joint clearly and has been increasingly used in developmental dysplasia of the hip (DDH) confirmation and follow-up. In this study, MRI was used to observe changes in the hip joints before and after closed reduction (CR) and to explore risk factors of residual acetabular dysplasia (RAD). METHODS: This is a prospective analysis of unilateral DDH patients with CR and spica cast in our hospital from October 2012 to July 2018. MRI and pelvic plain radiography were performed before and after CR. The labro-chondral complex (LCC) of the hip was divided into four types on MRI images. The variation in the thickening rate of the ligamentum teres, transverse ligaments, and pulvinar during MRI follow-up was analyzed, and the difference in cartilaginous acetabular head index was evaluated. The “complete relocation” rate of the femoral head was analyzed when the cast was changed for the last time, and the necrotic rate of the femoral head was evaluated after 18 months or more after CR. Lastly, the risk factors of RAD were analyzed. RESULTS: A total of 63 patients with DDH and CR were included. The LCC was everted before CR and inverted after CR, and the ligamentum teres, transverse ligaments, and pulvinar were hypertrophic before and after CR, and then gradually returned to normal shape. The cartilaginous acetabular head index gradually increased to normal values. Complete relocation was observed in 58.7% of femoral heads, while 8.6% had necrosis. The abnormalities in LCC was related to RAD (OR: 4.35, P = 0.03), and the rate of type 3 LCC in the RAD group was higher. However, the IHDI classification (P = 0.09); the “complete relocation” of femoral heads (P = 0.61); and hypertrophy of the ligamentum teres (P = 1.00), transverse ligaments (P = 1.00), and pulvinar (P = 1.00) were not related to RAD. CONCLUSIONS: In this study, MRI can observe the variations of the abnormal soft tissue structures of the diseased hips after CR and spica casting, and can evaluate which hips will have RAD after CR. Therefore, we can utilize MRI in DDH patients appropriately. |
---|