Cargando…
CT based automatic clinical target volume delineation using a dense-fully connected convolution network for cervical Cancer radiation therapy
BACKGROUND: It is very important to accurately delineate the CTV on the patient’s three-dimensional CT image in the radiotherapy process. Limited to the scarcity of clinical samples and the difficulty of automatic delineation, the research of automatic delineation of cervical cancer CTV based on CT...
Autores principales: | Ju, Zhongjian, Guo, Wen, Gu, Shanshan, Zhou, Jin, Yang, Wei, Cong, Xiaohu, Dai, Xiangkun, Quan, Hong, Liu, Jie, Qu, Baolin, Liu, Guocai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938586/ https://www.ncbi.nlm.nih.gov/pubmed/33685404 http://dx.doi.org/10.1186/s12885-020-07595-6 |
Ejemplares similares
-
Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks
por: Dong, Jie, et al.
Publicado: (2022) -
Retracted: Segmentation Algorithm of Magnetic Resonance Imaging Glioma under Fully Convolutional Densely Connected Convolutional Networks
por: International, Stem Cells
Publicado: (2023) -
Automatic Detection of Cone Photoreceptors With Fully Convolutional Networks
por: Hamwood, Jared, et al.
Publicado: (2019) -
Cell‐free RNA and fully convolutional dense network‐based early preeclampsia prediction
por: Zhao, Zhuo, et al.
Publicado: (2023) -
HADCNet: Automatic segmentation of COVID-19 infection based on a hybrid attention dense connected network with dilated convolution
por: Chen, Ying, et al.
Publicado: (2022)