Cargando…
Feature Selection Stability and Accuracy of Prediction Models for Genomic Prediction of Residual Feed Intake in Pigs Using Machine Learning
Feature selection (FS, i.e., selection of a subset of predictor variables) is essential in high-dimensional datasets to prevent overfitting of prediction/classification models and reduce computation time and resources. In genomics, FS allows identifying relevant markers and designing low-density SNP...
Autores principales: | Piles, Miriam, Bergsma, Rob, Gianola, Daniel, Gilbert, Hélène, Tusell, Llibertat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938892/ https://www.ncbi.nlm.nih.gov/pubmed/33692825 http://dx.doi.org/10.3389/fgene.2021.611506 |
Ejemplares similares
-
Machine Learning Prediction of Crossbred Pig Feed Efficiency and Growth Rate From Single Nucleotide Polymorphisms
por: Tusell, Llibertat, et al.
Publicado: (2020) -
A Random Regression Model Based on a Single-Step Method for Improving the Genomic Prediction Accuracy of Residual Feed Intake in Pigs
por: Wang, Ye, et al.
Publicado: (2022) -
Impact of epistasis effects on the accuracy of predicting phenotypic values of residual feed intake in U. S Holstein cows
por: Liang, Zuoxiang, et al.
Publicado: (2022) -
Inclusive inheritance for residual feed intake in pigs and rabbits
por: David, Ingrid, et al.
Publicado: (2020) -
Quality of breeding value predictions from longitudinal analyses, with application to residual feed intake in pigs
por: David, Ingrid, et al.
Publicado: (2022)