Cargando…

The Microscopic Derivation and Well-Posedness of the Stochastic Keller–Segel Equation

In this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions [Formula: see text] . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derive...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Hui, Qiu, Jinniao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939045/
https://www.ncbi.nlm.nih.gov/pubmed/33758469
http://dx.doi.org/10.1007/s00332-020-09661-6
Descripción
Sumario:In this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions [Formula: see text] . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derived from an interacting particle system subject to both idiosyncratic and common noises. Both the unique existence of solutions to the stochastic KS equation and the mean-field limit result are addressed.