Cargando…
The Microscopic Derivation and Well-Posedness of the Stochastic Keller–Segel Equation
In this paper, we propose and study a stochastic aggregation–diffusion equation of the Keller–Segel (KS) type for modeling the chemotaxis in dimensions [Formula: see text] . Unlike the classical deterministic KS system, which only allows for idiosyncratic noises, the stochastic KS equation is derive...
Autores principales: | Huang, Hui, Qiu, Jinniao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939045/ https://www.ncbi.nlm.nih.gov/pubmed/33758469 http://dx.doi.org/10.1007/s00332-020-09661-6 |
Ejemplares similares
-
A Keller-Segel model for C elegans L1 aggregation
por: Avery, Leon, et al.
Publicado: (2021) -
Direct measurement of dynamic attractant gradients reveals breakdown of the Patlak-Keller-Segel chemotaxis model
por: Phan, Trung V., et al.
Publicado: (2023) -
Well-posedness for a stochastic 2D Euler equation with transport noise
por: Lang, Oana, et al.
Publicado: (2022) -
Well-posedness of parabolic difference equations
por: Ashyralyev, A, et al.
Publicado: (1994) -
Determinism, well-posedness, and applications of the ultrahyperbolic wave equation in spacekime
por: Wang, Yuxin, et al.
Publicado: (2022)