Cargando…
Understanding Concerns, Sentiments, and Disparities Among Population Groups During the COVID-19 Pandemic Via Twitter Data Mining: Large-scale Cross-sectional Study
BACKGROUND: Since the beginning of the COVID-19 pandemic in late 2019, its far-reaching impacts have been witnessed globally across all aspects of human life, such as health, economy, politics, and education. Such widely penetrating impacts cast significant and profound burdens on all population gro...
Autores principales: | Zhang, Chunyan, Xu, Songhua, Li, Zongfang, Hu, Shunxu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939057/ https://www.ncbi.nlm.nih.gov/pubmed/33617460 http://dx.doi.org/10.2196/26482 |
Ejemplares similares
-
Twitter sentiment classification for measuring public health concerns
por: Ji, Xiang, et al.
Publicado: (2015) -
Global Sentiments Surrounding the COVID-19 Pandemic on Twitter: Analysis of Twitter Trends
por: Lwin, May Oo, et al.
Publicado: (2020) -
Twitter sentiment analysis: An Arabic text mining approach based on COVID-19
por: Albahli, Saleh
Publicado: (2022) -
Exploring the sentiment of entrepreneurs on Twitter
por: Waters, James, et al.
Publicado: (2021) -
COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis
Publicado: (2021)