Cargando…
Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression
Programmed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading frames within its RNA genome. PRRSV employs −1 PRF directed by RNA secondary and tertiary structures w...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939443/ https://www.ncbi.nlm.nih.gov/pubmed/33127640 http://dx.doi.org/10.1074/jbc.RA120.016105 |
_version_ | 1783661750241984512 |
---|---|
author | Patel, Ankoor Treffers, Emmely E. Meier, Markus Patel, Trushar R. Stetefeld, Jörg Snijder, Eric J. Mark, Brian L. |
author_facet | Patel, Ankoor Treffers, Emmely E. Meier, Markus Patel, Trushar R. Stetefeld, Jörg Snijder, Eric J. Mark, Brian L. |
author_sort | Patel, Ankoor |
collection | PubMed |
description | Programmed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading frames within its RNA genome. PRRSV employs −1 PRF directed by RNA secondary and tertiary structures within its viral genome (canonical PRF), as well as a noncanonical −1 and −2 PRF that are stimulated by the interactions of PRRSV nonstructural protein 1β (nsp1β) and host protein poly(C)-binding protein (PCBP) 1 or 2 with the viral genome. Together, nsp1β and one of the PCBPs act as transactivators that bind a C-rich motif near the shift site to stimulate −1 and −2 PRF, thereby enabling the ribosome to generate two frameshift products that are implicated in viral immune evasion. How nsp1β and PCBP associate with the viral RNA genome remains unclear. Here, we describe the purification of the nsp1β:PCBP2:viral RNA complex on a scale sufficient for structural analysis using small-angle X-ray scattering and stochiometric analysis by analytical ultracentrifugation. The proteins associate with the RNA C-rich motif as a 1:1:1 complex. The monomeric form of nsp1β within the complex differs from previously reported homodimer identified by X-ray crystallography. Functional analysis of the complex via mutational analysis combined with RNA-binding assays and cell-based frameshifting reporter assays reveal a number of key residues within nsp1β and PCBP2 that are involved in complex formation and function. Our results suggest that nsp1β and PCBP2 both interact directly with viral RNA during formation of the complex to coordinate this unusual PRF mechanism. |
format | Online Article Text |
id | pubmed-7939443 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-79394432021-06-08 Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression Patel, Ankoor Treffers, Emmely E. Meier, Markus Patel, Trushar R. Stetefeld, Jörg Snijder, Eric J. Mark, Brian L. J Biol Chem Editors' Picks Programmed ribosomal frameshifting (PRF) is a mechanism used by arteriviruses like porcine reproductive and respiratory syndrome virus (PRRSV) to generate multiple proteins from overlapping reading frames within its RNA genome. PRRSV employs −1 PRF directed by RNA secondary and tertiary structures within its viral genome (canonical PRF), as well as a noncanonical −1 and −2 PRF that are stimulated by the interactions of PRRSV nonstructural protein 1β (nsp1β) and host protein poly(C)-binding protein (PCBP) 1 or 2 with the viral genome. Together, nsp1β and one of the PCBPs act as transactivators that bind a C-rich motif near the shift site to stimulate −1 and −2 PRF, thereby enabling the ribosome to generate two frameshift products that are implicated in viral immune evasion. How nsp1β and PCBP associate with the viral RNA genome remains unclear. Here, we describe the purification of the nsp1β:PCBP2:viral RNA complex on a scale sufficient for structural analysis using small-angle X-ray scattering and stochiometric analysis by analytical ultracentrifugation. The proteins associate with the RNA C-rich motif as a 1:1:1 complex. The monomeric form of nsp1β within the complex differs from previously reported homodimer identified by X-ray crystallography. Functional analysis of the complex via mutational analysis combined with RNA-binding assays and cell-based frameshifting reporter assays reveal a number of key residues within nsp1β and PCBP2 that are involved in complex formation and function. Our results suggest that nsp1β and PCBP2 both interact directly with viral RNA during formation of the complex to coordinate this unusual PRF mechanism. American Society for Biochemistry and Molecular Biology 2021-01-13 /pmc/articles/PMC7939443/ /pubmed/33127640 http://dx.doi.org/10.1074/jbc.RA120.016105 Text en © 2020 © 2020 Patel et al. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Editors' Picks Patel, Ankoor Treffers, Emmely E. Meier, Markus Patel, Trushar R. Stetefeld, Jörg Snijder, Eric J. Mark, Brian L. Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression |
title | Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression |
title_full | Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression |
title_fullStr | Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression |
title_full_unstemmed | Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression |
title_short | Molecular characterization of the RNA-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression |
title_sort | molecular characterization of the rna-protein complex directing −2/−1 programmed ribosomal frameshifting during arterivirus replicase expression |
topic | Editors' Picks |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939443/ https://www.ncbi.nlm.nih.gov/pubmed/33127640 http://dx.doi.org/10.1074/jbc.RA120.016105 |
work_keys_str_mv | AT patelankoor molecularcharacterizationofthernaproteincomplexdirecting21programmedribosomalframeshiftingduringarterivirusreplicaseexpression AT treffersemmelye molecularcharacterizationofthernaproteincomplexdirecting21programmedribosomalframeshiftingduringarterivirusreplicaseexpression AT meiermarkus molecularcharacterizationofthernaproteincomplexdirecting21programmedribosomalframeshiftingduringarterivirusreplicaseexpression AT pateltrusharr molecularcharacterizationofthernaproteincomplexdirecting21programmedribosomalframeshiftingduringarterivirusreplicaseexpression AT stetefeldjorg molecularcharacterizationofthernaproteincomplexdirecting21programmedribosomalframeshiftingduringarterivirusreplicaseexpression AT snijderericj molecularcharacterizationofthernaproteincomplexdirecting21programmedribosomalframeshiftingduringarterivirusreplicaseexpression AT markbrianl molecularcharacterizationofthernaproteincomplexdirecting21programmedribosomalframeshiftingduringarterivirusreplicaseexpression |