Cargando…
Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium
Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939473/ https://www.ncbi.nlm.nih.gov/pubmed/33093171 http://dx.doi.org/10.1074/jbc.RA120.016149 |
_version_ | 1783661756601597952 |
---|---|
author | Matsuyama, Kaori Kishine, Naomi Fujimoto, Zui Sunagawa, Naoki Kotake, Toshihisa Tsumuraya, Yoichi Samejima, Masahiro Igarashi, Kiyohiko Kaneko, Satoshi |
author_facet | Matsuyama, Kaori Kishine, Naomi Fujimoto, Zui Sunagawa, Naoki Kotake, Toshihisa Tsumuraya, Yoichi Samejima, Masahiro Igarashi, Kiyohiko Kaneko, Satoshi |
author_sort | Matsuyama, Kaori |
collection | PubMed |
description | Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln(263) serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite −1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6–linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization. |
format | Online Article Text |
id | pubmed-7939473 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-79394732021-06-08 Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium Matsuyama, Kaori Kishine, Naomi Fujimoto, Zui Sunagawa, Naoki Kotake, Toshihisa Tsumuraya, Yoichi Samejima, Masahiro Igarashi, Kiyohiko Kaneko, Satoshi J Biol Chem Protein Structure and Folding Arabinogalactan proteins (AGPs) are plant proteoglycans with functions in growth and development. However, these functions are largely unexplored, mainly because of the complexity of the sugar moieties. These carbohydrate sequences are generally analyzed with the aid of glycoside hydrolases. The exo-β-1,3-galactanase is a glycoside hydrolase from the basidiomycete Phanerochaete chrysosporium (Pc1,3Gal43A), which specifically cleaves AGPs. However, its structure is not known in relation to its mechanism bypassing side chains. In this study, we solved the apo and liganded structures of Pc1,3Gal43A, which reveal a glycoside hydrolase family 43 subfamily 24 (GH43_sub24) catalytic domain together with a carbohydrate-binding module family 35 (CBM35) binding domain. GH43_sub24 is known to lack the catalytic base Asp conserved among other GH43 subfamilies. Our structure in combination with kinetic analyses reveals that the tautomerized imidic acid group of Gln(263) serves as the catalytic base residue instead. Pc1,3Gal43A has three subsites that continue from the bottom of the catalytic pocket to the solvent. Subsite −1 contains a space that can accommodate the C-6 methylol of Gal, enabling the enzyme to bypass the β-1,6–linked galactan side chains of AGPs. Furthermore, the galactan-binding domain in CBM35 has a different ligand interaction mechanism from other sugar-binding CBM35s, including those that bind galactomannan. Specifically, we noted a Gly → Trp substitution, which affects pyranose stacking, and an Asp → Asn substitution in the binding pocket, which recognizes β-linked rather than α-linked Gal residues. These findings should facilitate further structural analysis of AGPs and may also be helpful in engineering designer enzymes for efficient biomass utilization. American Society for Biochemistry and Molecular Biology 2021-01-13 /pmc/articles/PMC7939473/ /pubmed/33093171 http://dx.doi.org/10.1074/jbc.RA120.016149 Text en © 2020 © 2020 Matsuyama et al. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Protein Structure and Folding Matsuyama, Kaori Kishine, Naomi Fujimoto, Zui Sunagawa, Naoki Kotake, Toshihisa Tsumuraya, Yoichi Samejima, Masahiro Igarashi, Kiyohiko Kaneko, Satoshi Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium |
title | Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium |
title_full | Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium |
title_fullStr | Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium |
title_full_unstemmed | Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium |
title_short | Unique active-site and subsite features in the arabinogalactan-degrading GH43 exo-β-1,3-galactanase from Phanerochaete chrysosporium |
title_sort | unique active-site and subsite features in the arabinogalactan-degrading gh43 exo-β-1,3-galactanase from phanerochaete chrysosporium |
topic | Protein Structure and Folding |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939473/ https://www.ncbi.nlm.nih.gov/pubmed/33093171 http://dx.doi.org/10.1074/jbc.RA120.016149 |
work_keys_str_mv | AT matsuyamakaori uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium AT kishinenaomi uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium AT fujimotozui uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium AT sunagawanaoki uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium AT kotaketoshihisa uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium AT tsumurayayoichi uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium AT samejimamasahiro uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium AT igarashikiyohiko uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium AT kanekosatoshi uniqueactivesiteandsubsitefeaturesinthearabinogalactandegradinggh43exob13galactanasefromphanerochaetechrysosporium |