Cargando…
High-throughput label-free cell detection and counting from diffraction patterns with deep fully convolutional neural networks
Significance: Digital holographic microscopy (DHM) is a promising technique for the study of semitransparent biological specimen such as red blood cells (RBCs). It is important and meaningful to detect and count biological cells at the single cell level in biomedical images for biomarker discovery a...
Autores principales: | Yi, Faliu, Park, Seonghwan, Moon, Inkyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Society of Photo-Optical Instrumentation Engineers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939515/ https://www.ncbi.nlm.nih.gov/pubmed/33686845 http://dx.doi.org/10.1117/1.JBO.26.3.036001 |
Ejemplares similares
-
Microvessel prediction in H&E Stained Pathology Images using fully convolutional neural networks
por: Yi, Faliu, et al.
Publicado: (2018) -
A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication
por: Yi, Faliu, et al.
Publicado: (2014) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Classification of crystal structures using electron diffraction patterns with a deep convolutional neural network
por: Ra, Moonsoo, et al.
Publicado: (2021) -
Multi-labelled proteins recognition for high-throughput microscopy images using deep convolutional neural networks
por: Zhang, Enze, et al.
Publicado: (2021)