Cargando…

Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination

Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) p...

Descripción completa

Detalles Bibliográficos
Autores principales: Nakamura, Kyosuke, Kustatscher, Georg, Alabert, Constance, Hödl, Martina, Forne, Ignasi, Völker-Albert, Moritz, Satpathy, Shankha, Beyer, Tracey E., Mailand, Niels, Choudhary, Chunaram, Imhof, Axel, Rappsilber, Juri, Groth, Anja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939521/
https://www.ncbi.nlm.nih.gov/pubmed/33450211
http://dx.doi.org/10.1016/j.molcel.2020.12.025
_version_ 1783661767421853696
author Nakamura, Kyosuke
Kustatscher, Georg
Alabert, Constance
Hödl, Martina
Forne, Ignasi
Völker-Albert, Moritz
Satpathy, Shankha
Beyer, Tracey E.
Mailand, Niels
Choudhary, Chunaram
Imhof, Axel
Rappsilber, Juri
Groth, Anja
author_facet Nakamura, Kyosuke
Kustatscher, Georg
Alabert, Constance
Hödl, Martina
Forne, Ignasi
Völker-Albert, Moritz
Satpathy, Shankha
Beyer, Tracey E.
Mailand, Niels
Choudhary, Chunaram
Imhof, Axel
Rappsilber, Juri
Groth, Anja
author_sort Nakamura, Kyosuke
collection PubMed
description Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.
format Online
Article
Text
id pubmed-7939521
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-79395212021-03-16 Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination Nakamura, Kyosuke Kustatscher, Georg Alabert, Constance Hödl, Martina Forne, Ignasi Völker-Albert, Moritz Satpathy, Shankha Beyer, Tracey E. Mailand, Niels Choudhary, Chunaram Imhof, Axel Rappsilber, Juri Groth, Anja Mol Cell Article Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs. Cell Press 2021-03-04 /pmc/articles/PMC7939521/ /pubmed/33450211 http://dx.doi.org/10.1016/j.molcel.2020.12.025 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Nakamura, Kyosuke
Kustatscher, Georg
Alabert, Constance
Hödl, Martina
Forne, Ignasi
Völker-Albert, Moritz
Satpathy, Shankha
Beyer, Tracey E.
Mailand, Niels
Choudhary, Chunaram
Imhof, Axel
Rappsilber, Juri
Groth, Anja
Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
title Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
title_full Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
title_fullStr Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
title_full_unstemmed Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
title_short Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
title_sort proteome dynamics at broken replication forks reveal a distinct atm-directed repair response suppressing dna double-strand break ubiquitination
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939521/
https://www.ncbi.nlm.nih.gov/pubmed/33450211
http://dx.doi.org/10.1016/j.molcel.2020.12.025
work_keys_str_mv AT nakamurakyosuke proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT kustatschergeorg proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT alabertconstance proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT hodlmartina proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT forneignasi proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT volkeralbertmoritz proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT satpathyshankha proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT beyertraceye proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT mailandniels proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT choudharychunaram proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT imhofaxel proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT rappsilberjuri proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination
AT grothanja proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination