Cargando…
Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination
Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) p...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939521/ https://www.ncbi.nlm.nih.gov/pubmed/33450211 http://dx.doi.org/10.1016/j.molcel.2020.12.025 |
_version_ | 1783661767421853696 |
---|---|
author | Nakamura, Kyosuke Kustatscher, Georg Alabert, Constance Hödl, Martina Forne, Ignasi Völker-Albert, Moritz Satpathy, Shankha Beyer, Tracey E. Mailand, Niels Choudhary, Chunaram Imhof, Axel Rappsilber, Juri Groth, Anja |
author_facet | Nakamura, Kyosuke Kustatscher, Georg Alabert, Constance Hödl, Martina Forne, Ignasi Völker-Albert, Moritz Satpathy, Shankha Beyer, Tracey E. Mailand, Niels Choudhary, Chunaram Imhof, Axel Rappsilber, Juri Groth, Anja |
author_sort | Nakamura, Kyosuke |
collection | PubMed |
description | Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs. |
format | Online Article Text |
id | pubmed-7939521 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-79395212021-03-16 Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination Nakamura, Kyosuke Kustatscher, Georg Alabert, Constance Hödl, Martina Forne, Ignasi Völker-Albert, Moritz Satpathy, Shankha Beyer, Tracey E. Mailand, Niels Choudhary, Chunaram Imhof, Axel Rappsilber, Juri Groth, Anja Mol Cell Article Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs. Cell Press 2021-03-04 /pmc/articles/PMC7939521/ /pubmed/33450211 http://dx.doi.org/10.1016/j.molcel.2020.12.025 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Nakamura, Kyosuke Kustatscher, Georg Alabert, Constance Hödl, Martina Forne, Ignasi Völker-Albert, Moritz Satpathy, Shankha Beyer, Tracey E. Mailand, Niels Choudhary, Chunaram Imhof, Axel Rappsilber, Juri Groth, Anja Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination |
title | Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination |
title_full | Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination |
title_fullStr | Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination |
title_full_unstemmed | Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination |
title_short | Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination |
title_sort | proteome dynamics at broken replication forks reveal a distinct atm-directed repair response suppressing dna double-strand break ubiquitination |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939521/ https://www.ncbi.nlm.nih.gov/pubmed/33450211 http://dx.doi.org/10.1016/j.molcel.2020.12.025 |
work_keys_str_mv | AT nakamurakyosuke proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT kustatschergeorg proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT alabertconstance proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT hodlmartina proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT forneignasi proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT volkeralbertmoritz proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT satpathyshankha proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT beyertraceye proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT mailandniels proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT choudharychunaram proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT imhofaxel proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT rappsilberjuri proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination AT grothanja proteomedynamicsatbrokenreplicationforksrevealadistinctatmdirectedrepairresponsesuppressingdnadoublestrandbreakubiquitination |