Cargando…
Similarity-Based Unsupervised Spelling Correction Using BioWordVec: Development and Usability Study of Bacterial Culture and Antimicrobial Susceptibility Reports
BACKGROUND: Existing bacterial culture test results for infectious diseases are written in unrefined text, resulting in many problems, including typographical errors and stop words. Effective spelling correction processes are needed to ensure the accuracy and reliability of data for the study of inf...
Autores principales: | Kim, Taehyeong, Han, Sung Won, Kang, Minji, Lee, Se Ha, Kim, Jong-Ho, Joo, Hyung Joon, Sohn, Jang Wook |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939936/ https://www.ncbi.nlm.nih.gov/pubmed/33616536 http://dx.doi.org/10.2196/25530 |
Ejemplares similares
-
BioWordVec, improving biomedical word embeddings with subword information and MeSH
por: Zhang, Yijia, et al.
Publicado: (2019) -
Word2vec convolutional neural networks for classification of news articles and tweets
por: Jang, Beakcheol, et al.
Publicado: (2019) -
Spelling of Medical Words
Publicado: (1893) -
The Spectral Underpinning of word2vec
por: Jaffe, Ariel, et al.
Publicado: (2020) -
Multi-label classification of research articles using Word2Vec and identification of similarity threshold
por: Mustafa, Ghulam, et al.
Publicado: (2021)