Cargando…
Prediction of Prolonged Length of Hospital Stay After Cancer Surgery Using Machine Learning on Electronic Health Records: Retrospective Cross-sectional Study
BACKGROUND: Postoperative length of stay is a key indicator in the management of medical resources and an indirect predictor of the incidence of surgical complications and the degree of recovery of the patient after cancer surgery. Recently, machine learning has been used to predict complex medical...
Autores principales: | Jo, Yong-Yeon, Han, JaiHong, Park, Hyun Woo, Jung, Hyojung, Lee, Jae Dong, Jung, Jipmin, Cha, Hyo Soung, Sohn, Dae Kyung, Hwangbo, Yul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7939945/ https://www.ncbi.nlm.nih.gov/pubmed/33616544 http://dx.doi.org/10.2196/23147 |
Ejemplares similares
-
Impact of image compression on deep learning-based mammogram classification
por: Jo, Yong-Yeon, et al.
Publicado: (2021) -
Predicting Prolonged Length of ICU Stay through Machine Learning
por: Wu, Jingyi, et al.
Publicado: (2021) -
Next-Generation Sequencing–Based Cancer Panel Data Conversion Using International Standards to Implement a Clinical Next-Generation Sequencing Research System: Single-Institution Study
por: Park, Phillip, et al.
Publicado: (2020) -
Prediction of Chronic Disease-Related Inpatient Prolonged Length of Stay Using Machine Learning Algorithms
por: Symum, Hasan, et al.
Publicado: (2020) -
Factors associated with prolonged length of stay for elective hepatobiliary and neurosurgery patients: a retrospective medical record review
por: Lee, Siu Yin, et al.
Publicado: (2018)