Cargando…
ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions from resting state fMRI data of patients with Schizophrenia
We construct Functional Connectivity Networks (FCN) from resting state fMRI (rsfMRI) recordings towards the classification of brain activity between healthy and schizophrenic subjects using a publicly available dataset (the COBRE dataset) of 145 subjects (74 healthy controls and 71 schizophrenic sub...
Autores principales: | Gallos, Ioannis K, Gkiatis, Kostakis, Matsopoulos, George K, Siettos, Constantinos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940114/ https://www.ncbi.nlm.nih.gov/pubmed/33709030 http://dx.doi.org/10.3934/Neuroscience.2021016 |
Ejemplares similares
-
Construction of embedded fMRI resting-state functional connectivity networks using manifold learning
por: Gallos, Ioannis K., et al.
Publicado: (2020) -
Altered Brain Functional Connectivity in Small-Cell Lung Cancer Patients after Chemotherapy Treatment: A Resting-State fMRI Study
por: Bromis, Konstantinos, et al.
Publicado: (2017) -
Independent component analysis: a reliable alternative to general linear model for task-based fMRI
por: Gkiatis, Kostakis, et al.
Publicado: (2023) -
Standardization of presurgical language fMRI in Greek population: Mapping of six critical regions
por: Gkiatis, Kostakis, et al.
Publicado: (2022) -
Construction of functional brain connectivity networks from fMRI data with driving and modulatory inputs: an extended conditional Granger causality approach
por: Almpanis, Evangelos, et al.
Publicado: (2020)