Cargando…
Modelling and predicting the spatio-temporal spread of COVID-19, associated deaths and impact of key risk factors in England
COVID-19 caseloads in England have passed through a first peak, and at the time of this analysis appeared to be gradually increasing, potentially signalling the emergence of a second wave. To ensure continued response to the epidemic is most effective, it is imperative to better understand both retr...
Autores principales: | Sartorius, B., Lawson, A. B., Pullan, R. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940626/ https://www.ncbi.nlm.nih.gov/pubmed/33686125 http://dx.doi.org/10.1038/s41598-021-83780-2 |
Ejemplares similares
-
Author Correction: Modelling and predicting the spatio‑temporal spread of COVID‑19, associated deaths and impact of key risk factors in England
por: Sartorius, B., et al.
Publicado: (2021) -
Evaluation of predictive capability of Bayesian spatio-temporal models for Covid-19 spread
por: Lawson, Andrew B.
Publicado: (2023) -
Spatio-temporal predictive modeling framework for infectious disease spread
por: Ganesan, Sashikumaar, et al.
Publicado: (2021) -
Modelling and predicting the spatio-temporal spread of cOVID-19 in Italy
por: Giuliani, Diego, et al.
Publicado: (2020) -
Predicting the spatio-temporal spread of West Nile virus in Europe
por: García-Carrasco, José-María, et al.
Publicado: (2021)