Cargando…
Deep learning-based enhancement of epigenomics data with AtacWorks
ATAC-seq is a widely-applied assay used to measure genome-wide chromatin accessibility; however, its ability to detect active regulatory regions can depend on the depth of sequencing coverage and the signal-to-noise ratio. Here we introduce AtacWorks, a deep learning toolkit to denoise sequencing co...
Autores principales: | Lal, Avantika, Chiang, Zachary D., Yakovenko, Nikolai, Duarte, Fabiana M., Israeli, Johnny, Buenrostro, Jason D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940635/ https://www.ncbi.nlm.nih.gov/pubmed/33686069 http://dx.doi.org/10.1038/s41467-021-21765-5 |
Ejemplares similares
-
Protocol for single-cell ATAC sequencing using combinatorial indexing in mouse lung adenocarcinoma
por: Del Priore, Isabella, et al.
Publicado: (2021) -
Assessment of computational methods for the analysis of single-cell ATAC-seq data
por: Chen, Huidong, et al.
Publicado: (2019) -
CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data
por: Thibodeau, Asa, et al.
Publicado: (2021) -
maxATAC: Genome-scale transcription-factor binding prediction from ATAC-seq with deep neural networks
por: Cazares, Tareian A., et al.
Publicado: (2023) -
Transcript-indexed ATAC-seq for precision immune profiling
por: Satpathy, Ansuman T., et al.
Publicado: (2018)