Cargando…
Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning
Elucidating functionality in non-coding regions is a key challenge in human genomics. It has been shown that intolerance to variation of coding and proximal non-coding sequence is a strong predictor of human disease relevance. Here, we integrate intolerance to variation, functional genomic annotatio...
Autores principales: | Vitsios, Dimitrios, Dhindsa, Ryan S., Middleton, Lawrence, Gussow, Ayal B., Petrovski, Slavé |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940646/ https://www.ncbi.nlm.nih.gov/pubmed/33686085 http://dx.doi.org/10.1038/s41467-021-21790-4 |
Ejemplares similares
-
Mantis-ml: Disease-Agnostic Gene Prioritization from High-Throughput Genomic Screens by Stochastic Semi-supervised Learning
por: Vitsios, Dimitrios, et al.
Publicado: (2020) -
Orion: Detecting regions of the human non-coding genome that are intolerant to variation using population genetics
por: Gussow, Ayal B., et al.
Publicado: (2017) -
Correction: Orion: Detecting regions of the human non-coding genome that are intolerant to variation using population genetics
por: Gussow, Ayal B., et al.
Publicado: (2018) -
DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets
por: Raies, Arwa, et al.
Publicado: (2022) -
Author Correction: DrugnomeAI is an ensemble machine-learning framework for predicting druggability of candidate drug targets
por: Raies, Arwa, et al.
Publicado: (2023)