Cargando…

Geometric Reproducibility of Fiducial Markers and Efficacy of a Patient-Specific Margin Design Using Deep Inspiration Breath Hold for Stereotactic Body Radiation Therapy for Pancreatic Cancer

PURPOSE: In patients undergoing stereotactic body radiation therapy (SBRT) for pancreatic adenocarcinoma, the reproducibility of tumor positioning between deep-inspiration breath holds is unclear. We characterized this variation with fiducials at simulation and treatment and investigated whether a p...

Descripción completa

Detalles Bibliográficos
Autores principales: Han-Oh, Sarah, Hill, Colin, Kang-Hsin Wang, Ken, Ding, Kai, Wright, Jean L., Alcorn, Sara, Meyer, Jeffrey, Herman, Joseph, Narang, Amol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940819/
https://www.ncbi.nlm.nih.gov/pubmed/33732963
http://dx.doi.org/10.1016/j.adro.2021.100655
Descripción
Sumario:PURPOSE: In patients undergoing stereotactic body radiation therapy (SBRT) for pancreatic adenocarcinoma, the reproducibility of tumor positioning between deep-inspiration breath holds is unclear. We characterized this variation with fiducials at simulation and treatment and investigated whether a patient-specific breath-hold (PSBH) margin would help account for intrafraction variation at treatment. METHODS AND MATERIALS: We analyzed 20 consecutive patients with pancreatic cancer who underwent SBRT with deep-inspiration breath holds. At simulation, 3 additional breath-hold scans were acquired immediately after the contrast-enhanced planning computed tomography (CT) scan and used to quantify the mean and maximum variations in the simulation fiducial position (Sim_Var(avg) and Sim_Var(max)), as well as to design the internal target volume (ITV) incorporating a PSBH margin. RESULTS: At treatment, a mean of 5 breath-hold cone beam CT (CBCT) scans were acquired per fraction for each patient to quantify the mean and maximum variations in the treatment fiducial position (Tx_Var(avg) and Tx_Var(max)). Various planning target volume (PTV) margins on the gross tumor volume (GTV) versus ITV were evaluated using CBCT scans, with the goal of >95% of fiducials being covered at treatment. The Sim_Var(avg) and Sim_Var(max) were 0.9 ± 0.5 mm and 1.5 ± 0.8 mm in the left-right (LR) direction, 0.9 ± 0.4 mm and 1.4 ± 0.4 mm in the anteroposterior (AP) direction, and 1.5 ± 0.9 mm and 2.1 ± 1.0 mm in the superoinferior (SI) direction, respectively. The Tx_Var(avg) and Tx_Var(max) were 1.2 ± 0.4 mm and 2.0 ± 0.7 mm in the LR direction, 1.1 ± 0.4 mm and 1.8 ± 0.6 mm in the AP direction, and 1.9 ± 1.0 mm and 3.1 ± 1.4 mm in the SI direction, respectively. The ITV was increased by 21.0% ± 8.6% compared with the GTV alone. The PTV margin necessary to encompass >95% of the fiducial locations was 2 mm versus 4 mm in both LR and AP and 4 mm versus 6 mm in SI for the ITV and the GTV, respectively. CONCLUSIONS: The interbreath-hold variation is not insignificant, especially in the SI direction. Acquiring multiple breath-hold CT scans at simulation can help quantify the reproducibility of the interbreath hold and design a PSBH margin for treatment.