Cargando…
Joint Lp-Norm and L(2,1)-Norm Constrained Graph Laplacian PCA for Robust Tumor Sample Clustering and Gene Network Module Discovery
The dimensionality reduction method accompanied by different norm constraints plays an important role in mining useful information from large-scale gene expression data. In this article, a novel method named Lp-norm and L(2,1)-norm constrained graph Laplacian principal component analysis (PL21GPCA)...
Autores principales: | Kong, Xiang-Zhen, Song, Yu, Liu, Jin-Xing, Zheng, Chun-Hou, Yuan, Sha-Sha, Wang, Juan, Dai, Ling-Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940841/ https://www.ncbi.nlm.nih.gov/pubmed/33708239 http://dx.doi.org/10.3389/fgene.2021.621317 |
Ejemplares similares
-
Joint L(1/2)-Norm Constraint and Graph-Laplacian PCA Method for Feature Extraction
por: Feng, Chun-Mei, et al.
Publicado: (2017) -
A truncated nuclear norm and graph-Laplacian regularized low-rank representation method for tumor clustering and gene selection
por: Liu, Qi
Publicado: (2022) -
PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data
por: Feng, Chun-Mei, et al.
Publicado: (2019) -
Optimal forecasting accuracy using Lp-norm combination
por: Giacalone, Massimiliano
Publicado: (2021) -
An Epigenetic Prism to Norms and Values
por: Hendrickx, Kim, et al.
Publicado: (2018)