Cargando…

Artificial intelligence in gastric cancer: a translational narrative review

Increasing clinical contributions and novel techniques have been made by artificial intelligence (AI) during the last decade. The role of AI is increasingly recognized in cancer research and clinical application. Cancers like gastric cancer, or stomach cancer, are ideal testing grounds to see if ear...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Chaoran, Helwig, Ernest Johann
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940908/
https://www.ncbi.nlm.nih.gov/pubmed/33708896
http://dx.doi.org/10.21037/atm-20-6337
Descripción
Sumario:Increasing clinical contributions and novel techniques have been made by artificial intelligence (AI) during the last decade. The role of AI is increasingly recognized in cancer research and clinical application. Cancers like gastric cancer, or stomach cancer, are ideal testing grounds to see if early undertakings of applying AI to medicine can yield valuable results. There are numerous concepts derived from AI, including machine learning (ML) and deep learning (DL). ML is defined as the ability to learn data features without being explicitly programmed. It arises at the intersection of data science and computer science and aims at the efficiency of computing algorithms. In cancer research, ML has been increasingly used in predictive prognostic models. DL is defined as a subset of ML targeting multilayer computation processes. DL is less dependent on the understanding of data features than ML. Therefore, the algorithms of DL are much more difficult to interpret than ML, even potentially impossible. This review discussed the role of AI in the diagnostic, therapeutic and prognostic advances of gastric cancer. Models like convolutional neural networks (CNNs) or artificial neural networks (ANNs) achieved significant praise in their application. There is much more to be fully covered across the clinical administration of gastric cancer. Despite growing efforts, adapting AI to improving diagnoses for gastric cancer is a worthwhile venture. The information yield can revolutionize how we approach gastric cancer problems. Though integration might be slow and labored, it can be given the ability to enhance diagnosing through visual modalities and augment treatment strategies. It can grow to become an invaluable tool for physicians. AI not only benefits diagnostic and therapeutic outcomes, but also reshapes perspectives over future medical trajectory.