Cargando…
A deep learning-based quantitative computed tomography model for predicting the severity of COVID-19: a retrospective study of 196 patients
BACKGROUND: The assessment of the severity of coronavirus disease 2019 (COVID-19) by clinical presentation has not met the urgent clinical need so far. We aimed to establish a deep learning (DL) model based on quantitative computed tomography (CT) and initial clinical features to predict the severit...
Autores principales: | Shi, Weiya, Peng, Xueqing, Liu, Tiefu, Cheng, Zenghui, Lu, Hongzhou, Yang, Shuyi, Zhang, Jiulong, Wang, Mei, Gao, Yaozong, Shi, Yuxin, Zhang, Zhiyong, Shan, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940921/ https://www.ncbi.nlm.nih.gov/pubmed/33708843 http://dx.doi.org/10.21037/atm-20-2464 |
Ejemplares similares
-
Sensitivity and specificity of magnetic resonance imaging in routine diagnosis of pulmonary lesions: a comparison with computed tomography
por: Yang, Shuyi, et al.
Publicado: (2022) -
Clinical and computed tomography findings in Chinese lung cancer patients with HIV infection: A multi‐center study
por: Cheng, Zenghui, et al.
Publicado: (2017) -
Deep learning for detecting corona virus disease 2019 (COVID-19) on high-resolution computed tomography: a pilot study
por: Yang, Shuyi, et al.
Publicado: (2020) -
Quantitative computed tomography of the coronavirus disease 2019 (COVID-19) pneumonia
por: Cheng, Zenghui, et al.
Publicado: (2020) -
Repeatability and Reproducibility of Computed Tomography Radiomics for Pulmonary Nodules: A Multicenter Phantom Study
por: Peng, Xueqing, et al.
Publicado: (2022)